

Gravitational acceleration in molecular clouds

Guang-Xing, Andi Burkert @ LMU Munich, Tom Megeath (Toledo), Friedrich Wyrowski (MPIfR Bonn)

Cambresy, Lada, Alves, ...

Observing molecular cloud

do we understand them?

The Pizza experiment

Neglect turbulence and magnetic field

The Pizza experiment

 $\nabla^2 \Phi = -4\pi G\rho$

Collapse of a pizza

iso-thermal simulation

Burkert & Hartman 2004

Matter -> Gravity

Not always true!!

Gravity is complicated ...

Acceleration mapping method

Assuming the gas staying on a 2D plate

Structures are created by Compression, shear...

8 .0 N_H [10²¹ cm⁻²]

40

Conclusions

- Gravity is a long-range force. Self-gravity is not enough
- Edge effects expected compression, shear create structures
- Acceleration is the key
- Gravity is not the full story, need to understand turbulence and B field

Simulation from Bate

Turbulence

Turbulence + B Field

Planck Magnetic Field

Gravity

Star formation in general

Turbulence: Large L Gravity: Small L

Gravity is important at various scales

Filamentary structures can be produced by bubble expansions

Application to observations

Acceleration map of the *Pipe nebula*. Vectors represent accelerations. The red stars stand for protostars.

A simple estimate of the timescale (using $L = 1/2 \ a \ t^2$)

$$t \sim \sqrt{\frac{L}{a}} \,. \tag{2}$$

If $L \sim 1$ pc and $a \sim 3 \times 10^{-8}$, a typical timescale is $t \sim 10^6$ yr.

 \rightarrow Comparable to the free-fall timescale, much shorter than typical cloud lifetimes.

 \rightarrow A possible mechanism to form dense gas.