
Running GANDALF 
with openMP/MPI

Giovanni Rosotti 

IoA Cambridge 

30th October 2015



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Parallelisation - some background

• At the end of the ‘90s CPUs almost 
reached a bottleneck 

• Up to then improvements in 
performance were mainly coming 
by increases in the clock frequency 

• A hard boundary of a few Ghz was 
reached 

• Since then the way to go to 
improve performance has been 
mostly in having more than one 
core 

• Note: single core performance is 
still increasing! But at a much 
slower rate than what it used to be



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

How a CPU works

• How can you improve the performance of a CPU without increasing the clock 
frequency? 

• In theory when you compile a code it is converted into a sequence of instructions 

• The CPU goes through them one at time. The clock frequency determines how fast it 
goes 

• In practice, not that simple. Instructions do not all take the same time (e.g. floating 
point division takes much longer than the other operations). Also the memory (=RAM) 
takes much longer than a CPU clock to be read 

• You can guess that it is then possible to exploit many techniques to improve 
performance while keeping the same clock frequency



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

More about tricks

• Out of order execution: the CPU doesn’t actually go from top to bottom (but the result 
is the same as it did!) 

• Cache: faster (but smaller…) ram 

• Super-scalar processors: your CPU can do more than one operation at time (e.g. 
multiplying two ints while it multiplies two floats) 

• Other ones: pipelining, branch prediction, vectorization, … 

• These tricks improve the performance… 

• …some of them also exploit parallelism 

• But we do not usually talk about this level of parallelization because we cannot code 
for it; it is handled automatically by the CPU 

• You can still try to code in certain ways that (you think) will help the CPU using these 
tricks



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Parallelism

• Can be either inside your machine… 

• modern CPUs have more than one core 

• machines used for supercomputing (or for servers) can have more than one CPU 

• …or more machines can be connected together 

• all modern supercomputers are a collection of many (10^3-10^4) nodes 

• Latency and bandwidth of the interconnection determines how good (or bad) your 
code is going to scale



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

How to code for parallelism

• Short answer: thousands of ways 

• But mostly used in supercomputing: 

• OpenMP 

• MPI 

• I will NOT talk about GPU computing in this talk 

• It’s so different that it should get a talk on his own 

• GANDALF does not exploit it at the moment



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

OpenMP

• Shared memory (i.e. on the same machine) 

• Start parallel regions 

• The rest of the code remains serial 

• Easy to add parallelisation incrementally 

• Note that the paradigm of repeated fork/join is typical of openMP and NOT of shared 
memory in general (e.g. pthreads is different)



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

• You can add instructions to every loop. The code will still work even if you haven’t 
parallelized the other loops! 

• Incremental parallelisation 

• To parallelize a loop, the iterations need to be independent of each other. Or, better, 
there needs to be no data dependency 

• You can still parallelize if the dependencies are simple (e.g.: sum of the elements)

An example of OpenMP

#pragma omp parallel for 
    for (int i=0; i<N; i++) { 
        c[i]=a[i]+b[i]; 
    }



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

MPI

• Works both on the same machine or on different ones 

• Start as many replicas of your program as you want 

• But the replicas cannot see the memory of the other ones (distributed memory) 

• The different replicas can communicate only by sending messages. The library 
abstracts the actual way the communication takes place (in-memory, ethernet, 
infiniband, …) 

• A variety of functions for sending messages (one-to-one or global communication)



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

MPI in 30 seconds

• MPI_Init 

• MPI_Comm_size - tells you how many processors you have 

• MPI_Comm_rank - tells you your id 

• MPI_Send 

• MPI_Recv 

• MPI_Finalize



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

MPI in 30 seconds

#include <iostream> 
#include <mpi.h> 
int main(int argc, char** argv) { 
    int rank, ncpus; 
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&ncpus); 
    MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
    if (rank==0) { 
        int a=5; 
        MPI_Send(&a,1,MPI_INT,
1,0,MPI_COMM_WORLD); 
    } 
    else if(rank==1) { 
        int b; 
        MPI_Status status; 
        MPI_Recv(&b,1,MPI_INT,
0,0,MPI_COMM_WORLD,&status); 
        std::cout << b << std::endl; 
    } 
    MPI_Finalize(); 
}

Rank 0 Rank 1



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

In reality much more difficult!

• MPI_Allreduce 

• MPI_Gather 

• MPI_Scatter 

• MPI_Alltoall 

• … (the library contains more than 100 functions) 

• most importantly, you need to think HOW you parallelise the code!



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Parallelisation in GANDALF

• You don’t need to know how GANDALF is parallelised to use it 

• But you might want to know for your culture. Also, you do need to know it if you 
added some physics and you need to parallelise it! 

• OpenMP parallelisation is mostly trivial 

• Just add the right directives to your loop 

• Only complicated point is tree construction 

• Done level by level. Means that you start taking advantage of parallelism only 
on the lower levels 

• In theory, this approach sets a hard boundary on the maximum speed-up that 
can be reached 

• In practice, tree construction is only a minor fraction of the run-time anyway



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Tree

Level 0

Level 1

Level 2

Level 3

1

2

3

4
5

6

7

8
9

10

11

12

13

14

15

Figure from Gafton & Rosswog 2011

KD Tree 
Widely used 

• PKDGRAV (Stadley+ 2001) 
• GASOLINE (Wadsley+ 2004) 
• Gafton & Rosswog 2011



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Tree construction



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

MPI - Domain decomposition

• MPI: much more complicated! Currently works, but not super robust 

• Uses domain decomposition 

• Uses the same tree used for neighbour finding 

• Note: this means that number of MPI processes needs to be power of 2! 

• Simplifies the coding 

• Load balancing is achieved by “shifting” the domain boundaries



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Tree again

0 1
2 3



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Parallelisation in GANDALF

• For h calculation need to have ghosts 

• For force calculation each node has a “pruned tree”, that is a simplified version of the 
tree of the other processors 

• The pruned tree never contains particles, only cells 

• Pruned trees are used also for load balancing 

• The gravity force can be (sometimes) computed using the pruned trees. Particles for 
which this is not possible, and particles that interact hydrodynamically with other 
domains, need to be “exported”. This means a domain asks to another one to compute 
the force on its behalf



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Ghost and exported particles



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Pruned trees



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

continued

• Once particles have been exported, the other processor computes locally the force. 
Then the forces from all processors are summed up 

• Stars are simpler: each processor has a copy of them. Only the forces from local gas 
particles are computed, and then they are summed up. Calculation of forces from 
other stars instead are repeated on each processor (so don’t use GANDALF as a pure 
N-body code with MPI!) 

• Forces of the gas on the stars are computed locally by each processor and then 
summed up



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Main loop with MPI calls

Compute timesteps

Advance particle positions

Tree rebuild

Calculate smoothing lengths

Calculate thermal properties

Calculate forces

Compute N-body forces

End of timestep terms

Sink particle update

Communicate min timestep

Find MPI ghosts

Precompute forces 
Export particles

Get back accelerations

Compute total N-body force

Accrete particles on other 
processors 

Update sink properties

Load balancing



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Recommendations

• GANDALF is NOT designed to scale to ~1000 cores. Normally not needed for disc/
star formation problems. If people from different fields have different needs, let us 
know! 

• MPI parallelisation is relatively basic - good on a few processors. But combined with 
openMP, one can efficiently use even 100 processors. 

• Do expect MPI parallelisation to improve with time 

• Get a sense of how your problem scales before running the “production” simulations; 
too many processors could actually slow the code down (happened to me several 
times with other codes)



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Scaling tests - OpenMP

• Freefall test with 5e5 particles



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Scaling tests



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

• Freefall test with 1e6 particles

Scaling tests - MPI



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

How to compile with openMP/MPI

• With openMP, start your program normally. The number of threads is controlled by the 
OMP_NUM_THREADS environment variable 

• With MPI, you normally do like this: 

• Note that on supercomputers it might be different - check their documentation 

• Try doing a scaling test on a simple problem! (e.g.: freefall.dat)

CPP                = g++ 
PYTHON             = python 
COMPILER_MODE      = FAST 
PRECISION          = DOUBLE 
OPENMP             = 0 
OUTPUT_LEVEL       = 1 
DEBUG_LEVEL        = 0

Simple switch 
You might have to change the options in src/
Makefile if using a non-standard compiler

Change it to your MPI compiler (normally 
mpic++) 
Make sure that src/makefile is picking up 
the right options for your compiler

mpirun -np numthreads program


