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Multi-dimensional numerical hydrodynamics

Grid Particle Tessellation

• Many different paradigms have been developed over the last several decades

• Large spectrum of different algorithms and codes exist merging different 
aspects of the basic concepts.



Grid methods

• Fluid is divided into a regular grid

�, u
v, (B)

• Eulerian representation

• Grid cells are static

• Calculate net transfer for current timestep

• Calculate rate of flow of mass, 
momentum and energy between 
neighbouring grid cells

• If higher resolution is needed in some 
regions, use Adaptive Mesh 
Refinement (AMR)
• Split cells hierarchically into 4 smaller cells 

(8 for 3D)



Smoothed Particle hydrodynamics 
(SPH)

m,u, r,v, (B)

• Fluid is divided into discrete 
mass elements represented by 
particles

• Particles only interact 
hydrodynamically with other 
particles within a distance called 
the smoothing length

• Smoothing length adapts to keep 
same amount of mass inside 
interaction sphere, i.e. automatic 
spatial adaption

• The accuracy can be increased 
by increasing the number of 
neighbours inside the smoothing 
length



Tessellation methods

• Springel (2009) proposed a new 
unstructured finite-volume grid code.
• Instead of grids locations being fixed in space, use 

particles as ‘mesh-generating points’
• Use Voronoi tessellation to find cell volumes  plus 

interaction surfaces
• Solve hydrodynamic equations at each interacting surface 

using Finite-Volume method

• Adopts many advantages from both SPH and Grid
• Galilean invariant (not technically Lagrangian, but can be made so)
• Adaptive, unstructured mesh, so no preferential directions or advection problems

• Easy to increase/decrease resolution at any point in the simulation with any criteria (a la AMR)

• Some disadvantages though
• Increased complexity on both SPH and Grid
• Shock capturing not as good as uniform grid or AMR (although better than SPH)

Springel (2009)



Hydrodynamics class in GANDALF

• The main base class for defining the hydrodynamical algorithms in GANDALF is the 
Hydrodynamics class


• All Hydrodynamical algorithms must inherit from this class

Hydrodynamics

Sph

MeshlessFVGradhSph SM2012Sph

MfvMuscl MfvRungeKutta

MovingMesh 
(eventually)

FV



Smoothing

• The smoothed value of any physical property A at a position r is calculated by 
convolving A over all space with a smoothing function, i.e. 

• The smoothing kernel can be any function provided it satisfies the following two 
properties

1. - Normalisation 2. - Dirac delta function

⇥A(r)⇤ =
�

V
A(r�) W (r� r�, h) d3r�

-  smoothing length  (determines the width of the smoothing function)h

W -  smoothing kernel 

�

V

W (r� r�, h) d3r� = 1



The smoothing kernel

• The most employed smoothing kernel is the M4 cubic spline kernel (Monaghan & 
Lattanzio 1985)
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• The function itself, its first and second derivative are continuous (but not the third deriviative).

• Has compact support (i.e. has a finite range)



The summation approximation

• We now consider how to calculate the smoothed 
averages of an ensemble of discrete points 
instead of a continuous function.

• Assume we have an ensemble of masses       
with positions    , and with the property     .  
We can (approximately) equate the mass of 
the particle with           .

mj

rj

�j d3r

• The smoothed average of the property     at a position    is given byA r

• Note that we cannot calculate the smoothed value of any property without knowing 
the density first.  However, if we insert            , then we obtain the density A = �
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Smoothed Particle Hydrodynamics

• We will now apply smoothing techniques to solve the equations of hydrodynamics 
using particles, i.e. Smoothed Particle Hydrodynamics

�i = ⇥�(ri)⇤ =
N�

j=1

mj W (ri � rj , hi)

• The first step in SPH is always to calculate the density of all particles, i.e. 

• Calculating the density directly by summation replaces the conservation of mass 
equation.  Since the mass of a particle in an intrinsic property that cannot be 
changed, mass is automatically conserved in SPH.

hi = �
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• Note that since the smoothing length and the density depend on each other, the 
correct value must be obtained by iterating.  This can be achieved using fixed point 
iteration (safe), or, for example, a Newton-Rhapson iterator (fast).

• The smoothing length is calculated via the density by : 



Using Lagrangian mechanics

• The SPH equations can also be derived using Lagrangian mechanics.  This has the 
advantages of resulting in SPH equations which automatically obey the conservation 
laws.

• The Lagrangian for a hydrodynamic fluid is given by

• The only other information that we must provide is 

(the SPH density equation)

(from the 1st law of thermodynamics 
assuming no dissipation)

• We can then derive the equations of motion using the Euler-Lagrange equations
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‘Grad-h’ SPH

• After some nasty maths, we obtain the SPH momentum equation

• This is similar to the original SPH momentum equation, except for 
• The      term which takes account of gradients in h, and
• The two kernel terms now use two different smoothing lengths (so there is no 

need to symmetrise the kernel as it is done automatically).
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• Price & Monaghan (2007) derived the equations of self-gravitating SPH using 
Lagrangian methods.



A simple shock-tube test

• Here we show a simple test of SPH where two colliding flows form a dense, 
shocked layer of gas.

• Oops!  We need to include artificial viscosity.



Why do we need artificial viscosity?
• Artificial viscosity is needed in SPH for several reasons

• The length-scale over which gas molecules are accelerated/decelerated at the shock front is of order a 
few mean free paths.  This is much smaller than the resolution length of hydrodynamical codes and 
therefore shocks are effectively discontinuities.  Since the Euler equations (from which the SPH equations 
are based on) assume smoothly varying quantities which are differentiable, SPH can break down near 
shocks.  Artificial viscosity works to ‘smear out’ the discontinuity over a finite range so they can be better 
modelled by numerical codes.

• The Euler equations are essentially a low order approximation of the more general Boltzmann equation.  
The Euler equations assume that the gas is in Local Thermodynamic equilibrium (LTE), i.e. the distribution 
of velocities at any one point is isotropic and Maxwellian.  This may not be the case for strong shocks 
where the velocity distribution is non-Maxwellian and therefore the Euler equations do not strictly apply.

• In SPH, artificial viscosity is used to damp high frequency noise in the particle distribution which can build 
up if left unchecked (e.g.  due to finite size of time-step).



Artificial viscosity in SPH
• Lattanzio & Monaghan (1983) proposed a form of artificial viscosity which mimics 

the properties of the von Neumann-Richtmyer artificial viscosity term.
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• The first     term is used for sub-sonic shocks and can dampen post-shock 
oscillations.

• The second     term is used to model high Mach number shocks where particle 
penetration may occur.

�

�

• (Note : Monaghan (1997) suggested a new form of artificial viscosity based on 
Riemann solvers which is now commonly used).



Artificial viscosity in SPH
• The particles are now slowed down to rest at the shock front and reproduce the 

analytical results well with artificial viscosity.



Integration methods

• The motions of particles in SPH can be integrated in a similar manner to N-body 
codes.

• 2nd-order Runge-Kutta   (easy to implement, error control)

• 2nd-order Leap-frog        (symplectic, better conservation properties, only one force calc. per time-step)

• 2nd-order predictor-corrector   (only force calc. per time-step)

• The ideal time-step for an SPH particle is taken as the minimum of two separate 
criteria

• A Courant-Friedrichs-Lewy-like time-step 
condition to ensure the integration routine 
is stable

�t1 = �
h

cs + h|⇤ · v|

• An N-body-like condition used as an 
extra safety measure, and also for 
scenarios where other forces (e.g. 
gravitational) dominate over the pressure 
force and thus require a shorter time-step

�t2 = �

�
h

|a|



Trees

• Trees are data structures used to efficiently search a large data set for only certain 
entries by grouping the data in a systematic, hierarchical manner.

• In SPH, trees are used primarily to 
• Find neighbouring particles for SPH interactions

• Efficiently calculate the gravitational force

• There are a variety of different methods available when creating trees for SPH

• Octal spatial decomposition tree (Barnes & Hut 1986)

• Nearest-neighbour (bottom-up) binary tree

• Balanced binary-number tree
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Tree gravity

• Calculating the gravitational force is typically the most expensive part (in CPU time) 
of an SPH simulation (without radiative transfer)

• Using a tree can transform the gravitational calculation from a              operation to 
a                     operationO(N log N)

O(N2)

• The gravitational force for a particle using the tree 
is calculated by walking the tree (starting the root 
cell) and then interrogating each cell to see if we 
can approximate its contribution to the 
gravitational force by the its ficticious centre-of-
mass particle.
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< �MAX

• The original criterion (Barnes & Hut 1986) was to 
accept the centre-of-mass approximation if the 
angle subtended by the cell (to the particle) is less 
than some user-defined maximum



Multipole approximation

• We can increase the performance of the 
BH tree by including higher-order 
multipole moments in the calculation of 
the gravitational force

• The first four terms in the multipole expansion are

aGRAV = aMONOPOLE + aDIPOLE + aQUADRUPOLE + aOCTUPOLE + ...
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• The more multipole moment terms used, the more accurate the centre-of-mass 
approximation of a cell, but at the cost of extra cpu time and memory.  The 
decision of how many terms to include becomes a compromise between 
accuracy, speed and memory.



Multipole approximation

• To investigate what is the optimal multipole expansion, we calculate the mean force 
errors for some particular geometry of particles for monopole, quadrupole and 
octupole expansions and compare the errors as a function of cpu time.

• Suggests that the optimal expansion is to quadrupole order.



Multipole acceptance criteria

• Salmon & Warren (1994) reported that the simple geometric criterion used by Barnes 
& Hut (1986) can lead to catastrophic results for certain geometries if too high an 
opening angle is selected.

• They devised new opening criteria based on higher-order multipole terms : Multipole 
acceptance criteria (MAC)

• In their criterion, the multipole expansion can only be used for a cell if the leading 
error term in the expansion is smaller than some (user-defined) fraction of the total 
gravitational acceleration of the particle.

• Note : since we cannot possibly know the gravitational acceleration at the current 
time-step before we calculate it, we can usually use the previous time-steps 
acceleration as a good-enough estimate.
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quadrupoles and M = 3 for octupole.



Modern improvements to SPH

• There exists a variety of formulations of SPH present in the literature

• Pressure-Entropy SPH (Saitoh & Makino 2012/2013)

• Improved artificial viscosity formulations (e.g. Cullen & Dehnen 2010)

• These improvements do indeed improve the accuracy of SPH

• However, there is a cost in the longer CPU run times

• Also the newer algorithms are more difficult to implement

• Whether you need these or not may depend largely on the astrophysics problem you 
are investigating!


