-
e, m

o » '_
£ 7
]SM'SPP Excellence Cluster Universe —nﬂ

MU

Adding new physics
classes into GANDALF

David Hubber
Giovanni Rosotti

USM, LMU, Minchen

Excellence Cluster Universe, Garching bei
Miinchen, Germany;

University of Cambridge, UK

29th October 2015

Plan

Adding physics classes obviously requires you to get to know the general structure of
the GANDALF code a little better

No need to know everything about the C++ code of course; just the classes you are
changing/adding and how they interface to the relevant part of the code

We will go over a few important parts of the GANDALF code structure

Then we will try a few small exercises adding in new classes into GANDALF (and
maybe even running with some basic ics)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

The GANDALF source directory

The GANDALF source directory (gandalf/src) consists of several folders containing
several file categories :

Common - Nbody

GradhSph - Radiation
SM2013

Hydrodynamics -+ Thermal

MeshlessFV -+ Tree

Mpi - UnitTesting

If you want to know more about the class structure in GANDALF, this is
where you should look!

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

The SphSimulation Main Loop

(simplified)

(Simulation)

(Sphintegration & EnergyEquation)

(SphNeighbourSearch & Tree)

(SphNeighbourSearch & Sph)

(Radiation & Sph)

(SphNeighbourSearch & Sph)

(SphNeighbourSearch & Nbody)

<
|

Compute timesteps

Advance particle positions

Tree rebuild

Calculate smoothing lengths

Calculate thermal properties

(Sphintegration & EnergyEquation)

(Sinks)

Calculate forces

Compute N-body forces

End of timestep terms

Sink particle update

I

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Main classes

Sphlintegration: time integration (leapfrog, ...)

SphNeighbourSearch: sets-up the loops for smoothing length and force calculation

Sph: contains the code that actually computes SPH quantities
Nbody, sinks: self-explanatory

Radiation: in case you are using radiative transfer

The SPH Kernel is also a class!

It's very important...

...but you can't see it from the main loop

If you want to add a new kernel in GANDALF it’s very easy

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Example : The Sph class

Used for example in the smoothing length calculation in GradhSphBruteForce.cpp (easier
to understand than the tree version):

for (i=0; i<Nhydro; i++) {

// Skip over inactive particles
if (!sphdatali]l.active || sphdatalil.itype == dead) continue;

for (k=0; k<ndim; k++) rpl[k] = sphdatalil.rl[k];
// Compute distances and the reciprical between the current particle and all neighbours here

for (jj=0; jj<Nneib; jj++) {
j = neiblist[jjl;
for (k=0; k<ndim; k++) dr[k] = sphdataljl.r[k] - rp[k];
drsqd[jj] = DotProduct(dr,dr,ndim);

// Compute all SPH gather properties
okflag =
ComputeH(i,Nneib,big_number,m,mu,drsqd,gpot,sphdatali],nbody);
I3 N

N

Here we call sph to compute H

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Example : The Sph class

The Hydrodynamics/Sph class structure :

Hydrodynamics

l

| '
Sph FV

|
| v

GradhSph| [SM2012Sph

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Most important functions/data:

int ComputeH(const int, const int, const FLOAT, FLOAT *, FLOAT *, FLOAT *, FLOAT *,

void
void
void
void
void

void

void

SphParticle<ndim> &, Nbody<ndim> *);
ComputeThermalProperties(SphParticle<ndim> &);
ComputeSphGravForces(const int, const int, int *, SphParticle<ndim> &, SphParticle<ndim> *);
ComputeSphHydroGravForces(const int, const int, int *,
SphParticle<ndim> &, SphParticle<ndim> *);

ComputeSphHydroForces(const int, const int, const int *, const FLOAT *, const FLOAT *,

const FLOAT *, SphParticle<ndim> &, SphParticle<ndim> *);
ComputeSphNeibDudt(const int, const int, int *, FLOAT *, FLOAT *, FLOAT *,

SphParticle<ndim> &, SphParticle<ndim> *) {};

ComputeSphDerivatives(const int, const int, int *, FLOAT *, FLOAT *, FLOAT *,

SphParticle<ndim> &, SphParticle<ndim> *) {};
ComputeDirectGravForces(const int, const int, int *,

SphParticle<ndim> &, SphParticle<ndim> *);

vold ComputeStarGravForces(const int, NbodyParticle<ndim> **, SphParticle<ndim> &);
kernelclass<ndim> kern; ///< SPH kernel
GradhSphParticle<ndim> *sphdata; ///< Pointer to particle data

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Constructing the right objects!

Depending on the value of the parameters, construct the right object in
ProcessParameters (see example below)

The function is defined in SphSimulation.cpp (if you use SPH).

Parameters specific to the SPH flavour/Nbody are defined in ProcessNbodyParameters
(defined in Simulation.cpp) or ProcessSphParameters (defined in
GradhSphSimulation.cpp for GradhSph)

if (intparams["tabulated_kernel"] == 1) {
sph = new GradhSph<ndim, TabulatedKernel>
(intparams|['"hydro_forces"], intparams[“self_gravity"],
floatparams[“alpha_visc"], floatparams['"beta_visc"],
floatparams['"h_fac"], floatparams[“h_converge"], avisc, acond,
tdavisc, stringparams['gas_eos"], KernelName, simunits, simparams);

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Reading and processing parameters for your

new physics class

- Initialise the variables you need in your constructor (e.g. in src/GradhSph/
GradhSph.cpp)

template <int ndim, template<int> class kernelclass>
GradhSph<ndim, kernelclass>::GradhSph(int hydro_forces_aux, int self_gravity_aux,
FLOAT alpha_visc_aux, FLOAT beta_visc_aux,
FLOAT h_fac_aux, FLOAT h_converge_aux,
aviscenum avisc_aux, acondenum acond_aux,
tdaviscenum tdavisc_aux, string gas_eos_aux,
string KernelName, SimUnits &units, Parameters xparams):
Sph<ndim>(hydro_forces_aux, self_gravity_aux, alpha_visc_aux, beta_visc_aux,
h_fac_aux, h_converge_aux, avisc_aux, acond_aux, tdavisc_aux,

gas_eos_aux, KernelName, sizeof(GradhSphParticle<ndim>), units, params),
kern(kernelclass<ndim>(KernelName))

&kern;

(FLOAT) 1.0;

(FLOAT) 1.0;
this—>kernp—->kernrange;

this—>kernp
this—->kernfac
this—>kernfacsqd
this—>kernrange

N\

This is an initialisation list

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Initialisation list

Initialisation lists are used to :

- Initialise ‘const’ variables in classes

- Call the constructor of parent classes (if needed)

class Car {
Car(int);
~Car();

const int colour;
bool automatic;

b

class BatMobile() : public Car {
BatMobile(bool, int);
~BatMobile();

const bool flameThrower;

}

Car::Car(int _color) : colour(_colour) {
automatic = false;
b

BatMobile: :BatMobile(bool _flameThrower, int _color)
Car(_color), flameThrower(_flameThrower) {}

b

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Creating your own classes

Add the definition in the header files

You probably want to inherit from one of the existing classes (remember: look in src/
Headers)

Implement your class in a cpp file
If you add a new file, remember to add it to the makefile!
Don't forget to initialise your object in ProcessParameters!

Initialise all the variables you need in the constructor (don’t blame me if you don’t and
you then have problems because of uninitialised variables)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 1 : Adding a new unit into the

SimUnits class

One of the simplest classes used in GANDALF is the SimUnit class, which was
discussed in the ‘Units and scaling’ talk

Add a new SimUnit class of some new (potentially useful) quantity, e.g.
Kinematic viscosity
Specific entropy

Remember to add a new parameter (in Parameters.cpp) in order to allow the user to
change the new unit in the parameters file

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 2 : Adding a new external

gravitational potential field

Another simple class to add is to generate a new External Gravitational Potential field

Open up the File src/Headers/ExternalPotential.h and read through the few
implementations

Create a new ExternalPotential class for some simple potential field, e.g.
Point source
Spiral galactic potential
NFW profile?

Remember to edit the section of code that creates the ExternalPotential object to
create it if the option is selected in the parameters file

Note that this is an example of a class that exists exclusively in the header file. There
is no need to create any ‘.cpp’ file

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 3 : Add a new EOS class

A slightly more complicated (but relatively simple) class to add is a new EOS
(Equation of State) class

This class contains several functions that need to be set to compute various thermal
quantities, e.g. Pressure, Temperature, SoundSpeed, etc..

Create a new EOS class for a, e.g.
a Polytropic Equation of State
Some other EOS you might need in the future

Remember to add the new Object construction in the relevant place (the Sph
constructor)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

