
Adding new physics
classes into GANDALF

David Hubber
Giovanni Rosotti
!
USM, LMU, München
Excellence Cluster Universe, Garching bei
München, Germany;
University of Cambridge, UK
!
29th October 2015

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Plan

• Adding physics classes obviously requires you to get to know the general structure of
the GANDALF code a little better

• No need to know everything about the C++ code of course; just the classes you are
changing/adding and how they interface to the relevant part of the code

• We will go over a few important parts of the GANDALF code structure

• Then we will try a few small exercises adding in new classes into GANDALF (and
maybe even running with some basic ics)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

The GANDALF source directory

• The GANDALF source directory (gandalf/src) consists of several folders containing
several file categories :

• Common

• GradhSph

• Headers

• Hydrodynamics

• MeshlessFV

• Mpi

• Nbody

• Radiation

• SM2013

• Thermal

• Tree

• UnitTesting

If you want to know more about the class structure in GANDALF, this is
where you should look!

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

The SphSimulation Main Loop
(simplified)

Compute timesteps

Advance particle positions

Tree rebuild

Calculate smoothing lengths

Calculate thermal properties

Calculate forces

Compute N-body forces

End of timestep terms

Sink particle update

(Simulation)

(SphIntegration & EnergyEquation)

(SphNeighbourSearch & Tree)

(SphNeighbourSearch & Sph)

(Radiation & Sph)

(SphNeighbourSearch & Sph)

(SphNeighbourSearch & Nbody)

(SphIntegration & EnergyEquation)

(Sinks)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Main classes

• SphIntegration: time integration (leapfrog, …)

• SphNeighbourSearch: sets-up the loops for smoothing length and force calculation

• Sph: contains the code that actually computes SPH quantities

• Nbody, sinks: self-explanatory

• Radiation: in case you are using radiative transfer

• The SPH Kernel is also a class!

• It’s very important…

• …but you can’t see it from the main loop

• If you want to add a new kernel in GANDALF it’s very easy

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

for (i=0; i<Nhydro; i++) {

 // Skip over inactive particles
 if (!sphdata[i].active || sphdata[i].itype == dead) continue;

 for (k=0; k<ndim; k++) rp[k] = sphdata[i].r[k];

 // Compute distances and the reciprical between the current particle and all neighbours here
 //---
 for (jj=0; jj<Nneib; jj++) {
 j = neiblist[jj];
 for (k=0; k<ndim; k++) dr[k] = sphdata[j].r[k] - rp[k];
 drsqd[jj] = DotProduct(dr,dr,ndim);
 }
 //---

 // Compute all SPH gather properties
 //okflag =
 sph->ComputeH(i,Nneib,big_number,m,mu,drsqd,gpot,sphdata[i],nbody);

}

Example : The Sph class

!
Used for example in the smoothing length calculation in GradhSphBruteForce.cpp (easier
to understand than the tree version):
!

Here we call sph to compute H

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Example : The Sph class

• The Hydrodynamics/Sph class structure :

Hydrodynamics

Sph

GradhSph SM2012Sph

FV

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

• Most important functions/data:

 int ComputeH(const int, const int, const FLOAT, FLOAT *, FLOAT *, FLOAT *, FLOAT *,	
 SphParticle<ndim> &, Nbody<ndim> *);	
 void ComputeThermalProperties(SphParticle<ndim> &);	
 void ComputeSphGravForces(const int, const int, int *, SphParticle<ndim> &, SphParticle<ndim> *);	
 void ComputeSphHydroGravForces(const int, const int, int *,	
 SphParticle<ndim> &, SphParticle<ndim> *);	
 void ComputeSphHydroForces(const int, const int, const int *, const FLOAT *, const FLOAT *,	
 const FLOAT *, SphParticle<ndim> &, SphParticle<ndim> *);	
 void ComputeSphNeibDudt(const int, const int, int *, FLOAT *, FLOAT *, FLOAT *,	
 SphParticle<ndim> &, SphParticle<ndim> *) {};	
 void ComputeSphDerivatives(const int, const int, int *, FLOAT *, FLOAT *, FLOAT *,	
 SphParticle<ndim> &, SphParticle<ndim> *) {};	
 void ComputeDirectGravForces(const int, const int, int *,	
 SphParticle<ndim> &, SphParticle<ndim> *);	
 void ComputeStarGravForces(const int, NbodyParticle<ndim> **, SphParticle<ndim> &);	
!
 kernelclass<ndim> kern; ///< SPH kernel	
 GradhSphParticle<ndim> *sphdata; ///< Pointer to particle data

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Constructing the right objects!

• Depending on the value of the parameters, construct the right object in
ProcessParameters (see example below)

• The function is defined in SphSimulation.cpp (if you use SPH).

• Parameters specific to the SPH flavour/Nbody are defined in ProcessNbodyParameters
(defined in Simulation.cpp) or ProcessSphParameters (defined in
GradhSphSimulation.cpp for GradhSph)

!
!

if (intparams["tabulated_kernel"] == 1) {
 sph = new GradhSph<ndim, TabulatedKernel>
 (intparams["hydro_forces"], intparams[“self_gravity"],
 floatparams[“alpha_visc"], floatparams["beta_visc"],
 floatparams["h_fac"], floatparams[“h_converge"], avisc, acond,
 tdavisc, stringparams["gas_eos"], KernelName, simunits, simparams);
}

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

template <int ndim, template<int> class kernelclass>
GradhSph<ndim, kernelclass>::GradhSph(int hydro_forces_aux, int self_gravity_aux,
 FLOAT alpha_visc_aux, FLOAT beta_visc_aux,
 FLOAT h_fac_aux, FLOAT h_converge_aux,
 aviscenum avisc_aux, acondenum acond_aux,
 tdaviscenum tdavisc_aux, string gas_eos_aux,
 string KernelName, SimUnits &units, Parameters *params):
Sph<ndim>(hydro_forces_aux, self_gravity_aux, alpha_visc_aux, beta_visc_aux,
 h_fac_aux, h_converge_aux, avisc_aux, acond_aux, tdavisc_aux,
 gas_eos_aux, KernelName, sizeof(GradhSphParticle<ndim>), units, params),
kern(kernelclass<ndim>(KernelName))
{
 this->kernp = &kern;
 this->kernfac = (FLOAT) 1.0;
 this->kernfacsqd = (FLOAT) 1.0;
 this->kernrange = this->kernp->kernrange;
}

Reading and processing parameters for your
new physics class

• Initialise the variables you need in your constructor (e.g. in src/GradhSph/
GradhSph.cpp)

!

This is an initialisation list

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Initialisation list

• Initialisation lists are used to :

• Initialise ‘const’ variables in classes

• Call the constructor of parent classes (if needed)

class Car {
 Car(int);
 ~Car();

 const int colour;
 bool automatic;
};

Car::Car(int _color) {
 color = _color;
 automatic = false;
};

Car::Car(int _color) : colour(_colour) {
 automatic = false;
};

class BatMobile() : public Car {
 BatMobile(bool, int);
 ~BatMobile();

 const bool flameThrower;
}

BatMobile::BatMobile(bool _flameThrower, int _color) :
 Car(_color), flameThrower(_flameThrower) {}
};

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Creating your own classes

• Add the definition in the header files

• You probably want to inherit from one of the existing classes (remember: look in src/
Headers)

• Implement your class in a cpp file

• If you add a new file, remember to add it to the makefile!

• Don’t forget to initialise your object in ProcessParameters!

• Initialise all the variables you need in the constructor (don’t blame me if you don’t and
you then have problems because of uninitialised variables)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 1 : Adding a new unit into the
SimUnits class

• One of the simplest classes used in GANDALF is the SimUnit class, which was
discussed in the ‘Units and scaling’ talk

• Add a new SimUnit class of some new (potentially useful) quantity, e.g.

• Kinematic viscosity

• Specific entropy

• Remember to add a new parameter (in Parameters.cpp) in order to allow the user to
change the new unit in the parameters file

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 2 : Adding a new external
gravitational potential field

• Another simple class to add is to generate a new External Gravitational Potential field

• Open up the File src/Headers/ExternalPotential.h and read through the few
implementations

• Create a new ExternalPotential class for some simple potential field, e.g.

• Point source

• Spiral galactic potential

• NFW profile?

• Remember to edit the section of code that creates the ExternalPotential object to
create it if the option is selected in the parameters file

• Note that this is an example of a class that exists exclusively in the header file. There
is no need to create any ‘.cpp’ file

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 3 : Add a new EOS class

• A slightly more complicated (but relatively simple) class to add is a new EOS
(Equation of State) class

• This class contains several functions that need to be set to compute various thermal
quantities, e.g. Pressure, Temperature, SoundSpeed, etc..

• Create a new EOS class for a, e.g.

• a Polytropic Equation of State

• Some other EOS you might need in the future

• Remember to add the new Object construction in the relevant place (the Sph
constructor)

