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Why not just stick with SPH?

- SPH is perfectly adequate in many scenarios but can fail, or at least prove sub-optimal in
certain astrophysical contexts, e.g.

- Gases of different temperatures/specific entropies are in contact or mixing together
(e.g. a hot gas bubble pushing on a cold background medium)

GRID S

Agertz et al. (2007)

- High artificial viscosity causes unphysically high dissipation (e.g. evolution of a
protoplanetary disc)
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Why not just stick with SPH?

» Other methods, in particular Godunov methods, have proven
themselves to handle such hydrodynamical cases better than SPH

- However, Godunov methods have traditionally been used on static,
Eulerian grid codes which introduce their own set of problems

+ Advection errors (i.e. numerical diffusion when the gas is travelling
rapidly between grid cells)

» Angular momentum conservation

- In the last few years, hybrid algorithms that attempt to retain as many
of the advantages of both approaches have been developed

- Moving-mesh Finite-Volume Hydrodynamics (cf. AREPO, Springel
2010)

+ Meshless Finite-Volume Hydrodynamics (cf. GIZMO, Lanson & Vila
2008)
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‘Old-tashioned’ Finite Difference

- The Finite-Difference method is a discretization method, where a
smooth function is discretized at regular points

- Differential equations are solved by approximating derivatives by
finite differences

+ e.g. using the Euler method:
0Q(r) Qz+h)—Q(x)
or h
» This can be applied for gradients in space or time and for higher
order derivatives

- e.g. the heat equation, using a second-order central difference for the
space derivative OGP~ n x s — BB
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Godunov methods :

Finite Volume (FV) Hydrodynamics

- Sergei Godunov (1959) suggested a new approach to solving the Hydrodynamical equations
which moved away from the traditional Finite-Difference scheme and towards a Finite-
Volume approach.

Instead of calculating effective forces from approximate gradients, the finite-volume approach
calculates the flux of the hydrodynamical quantities at the cell boundaries.

- As the flux entering a given volume equals the flux leaving the adjacent volume, this method
is conservative.

- The cell boundaries define a Riemann problem
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What is a Riemann solver?

» A Riemann solver is an algorithm for computing the solution of a
simple Riemann problem, for example

+ The state of the intermediate shock structure
+ The flux of mass, momentum and energy across the shock
* Why is using a Riemann solver important?

+ We could in theory compute the fluxes from the left and right
states, but then we might fail at capturing shocks properly

+ A Riemann solver effectively allows us to capture shocks with the
minimum required dissipation (BIG step up from schemes that
use artificial viscosity, such as SPH)

» The Godunov method uses an exact/approximate Riemann solver
locally

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015



0.9 |

0.8 }

0.7 ¢

0.6 |

05}

04}

0.3}

0.2}

01°

Exact Riemann solvers

The exact Riemann solver gives the numerical exact solution to a Riemann problem
There is no closed-form solution to the Riemann problem, even not for ideal gases,
not for the isothermal, nor the isentropic equations

Thus, one has to use an initial pressure guess and iterate to find the solution up to
any desired accuracy

The flux is then calculated according to the wave pattern at the boundary
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Approximate Riemann solvers

» An approximate Riemann solver does what it says, it calculates an
approximate solution to the Riemann problem

* It is much faster than the exact Riemann solver as it uses no iteration

» In most cases an approximate solution is perfectly adequate and can
speed up the code considerably

» In the rare cases that it fails (e.g. near a strong shock), we can switch
to the exact Riemann solver

» The most used approximate solvers are the Roe solver, the HLLE and
the HLLC
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Integrating the Euler equations

- Our scheme now integrates the five Euler equations:

P
P + V(pu) =0
0 .
a(ﬂu) +V(pu®u) = —Vp
.
Td—f(p()wt) + V(petoru) = —V(up)

n-. n Af
- The new state is then: Q,‘.'H =Q; + R [Fz’.—l/‘z = FH—I/‘Z]

- The timestep size has to be confined in order to prevent wave interaction. This is
usually done by the CFL-condition:

C.lx
At = ==L
‘S'”’L(lll:

- where the maximum wave speed is the maximum of the sum of the velocity and the
sound speed in the domain

0 Copis 1
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So, that’ll work right??¢ ...

- Well, sort of ...
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- It’s correct, but has been horribly ‘smoothed-out’” over the discontinuities
- This is caused by using the average cell values as the boundary conditions for the Riemann

solver
- Effectively leads to a spatially 1st-order scheme
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Moving to 2nd order

MUSCL-Hancock scheme

- In the 1970s, Van Leer developed the Monotonic Upstream-Centered Scheme for

Conservation Laws, aka MUSCL.
- The main ingredient in MUSCL is that the gradient is calculated and used to extrapolate the

cell properties to the cell boundaries
- The extrapolated values are evolved half a timestep to make the scheme stable

Ii-1 €I; Tit1

- The time evolved extrapolated values are then used to solve the Riemann problem
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Ooops, something’s gone wrong!

If the code does not break (which it usually does), Godunov’s theorem states, that
using a second order scheme will produce oscillations at large gradients
- This is due to the fact that the slopes can develop overshoots if the cell gradient is

steeper than the overall gradient

One can prevent these with the application of slope limiters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015



Slope limiters

A world of pain

- A slope limiter is an algorithm for preventing the ‘wiggling’ in the shock solution

- Effectively the slope limiter forces the hydrodynamics to be solved in 1st-order near any
discontinuity, such as a shock

» Everywhere else where the flow is smooth, the hydrodynamics is solved in 2nd-order
» Let’s consider this super simple slope limiter, called a minmod

AQ,=Q; —Q;_;
AQR - Q'z',—f-l - Qz
I,i| .'I:T, 1,1]
AQ; =0 for AQLAQR <0
AQ; =min(AQ;,AQp) else
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Finally, success
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Moving mesh FV schemes

» One can use the finite volume method on a moving grid, defined by particles
similar to SPH

» In order to define boundaries, one has to perform a Delauney triangulation
+ Most famous variant is the AREPO (Springel 2010) code

COMING SOON!!

Moving mesh in GANDALF-:
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Meshless FV schemes

New Meshless Methods Here (MFV, MFM)  Unstructured / Moving—Mesh Methods Smoothed —Particle Hydrodynamics

Hopkins (2015)
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Meshless FV schemes

Lanson & Vila (2008a,b):

proposed an alternative hybrid algorithm, between traditional
FV and SPH methods

consistent and conservative mesh-free finite-volume method

Gaburov & Nitadori (2011):
Astrophysical Weighted Particle Magnetohydrodynamics

Hopkins (2014, 2015):
GIZMO Mesh-free hydrodynamic simulation Methods
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Meshless FV schemes

Advantages (Hopkins, 2015)

compared to SPH

¢ proper convergence

e good capturing of fluid-mixing
instabilities

* no artificial viscosity

e more accurate sub-sonic flow
evolution (reduced noise)

* better shock-capturing

compared to fixed grid methods

e automatic adaptivity

e reduced advection errors and numerical
diffusion

e velocity-independence of numerical
errors

e accurate coupling to N-body gravity
solvers

e sood angular momentum conservation

e elimination of grid alignment effects
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Meshless FV :
Kelvin-Helmholtz instability

Hopkins (2015)
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Meshless FV schemes

Table 1. Summary of Some Popular Numerical Hydrodynamics Methods

Hopkins

Conservative?  Conserves Long-Time Number
Method Consistency  (Mass/Energy Angular Numerical Integration of Known
Name /Order Momentum)  Momentum Dissipation Stability? Neighbors Difficulties
Smoothed-Particle Hydro. (SPH)
“Traditional” SPH 0 v up to AV artificial v ~ 32 fluid mixing, noise,
(GADGET, GASOLINE, TSPH) viscosity (AV) EO errors
“Modem™ SPH 0 v up to AV AV+conduction v ~ 128 —442 excess diffusion,
(P-SPH, SPHS, PHANTOM, SPHGal) +switches EO errors
“Corrected” SPH 0-1 X % artificial X ~ 32 CITOrS Lrow
(rpSPH, Integral-SPH, Morris96 SPH, viscosity non-linearly,
Moving-Least-Squares SPH) “self-acceleration™
“Godunov” SPH 0 v up to Riemann v ~ 300 instability,
(GSPH, GSPH-102, Cha03 SPH) gradient solver expense,
CITOrS EQ errors remain
Finite-Difference Methods
Gridded/Lattice Finite Difference 2-3 X X artificial X ~8—128 instability,
(ZEUS [some versions), Pencil code) Viscosity lack of
Lagrangian Finite Difference ~ 60 conservation,
(PHURBAS, FPM) advection errors
Finite-Volume Godunov Methods
Static Grids 2-3 v X Riemann v ~ 8 over-mixing,
(ATHENA, PLUTO) solver (geometric) ang. mom.,
~8—125 velocity-dependent
(stencil) errors (VDE)
Adaptive-Mesh Refinement (AMR) 2-3 v X Riemann v ~ 8 —48 over-mixing,
(ENZO, RAMSES, FLASH) (1) solver ~24-216 ang. mom., VDE,
refinement criteria
Moving-Mesh Methods 2 v X Ricmann v ~13-30 mesh deformation,
(AREPO, TESS, FVYMHD3D) solver ang. mom. (7),
“remeshing”
New Methods In This Paper
Meshless Finite-Mass 2 v up to Riemann v ~ 32 remeshing noise
& Meshless Finite-Volume gradient solver ?
(MFM, MFV) Crrors (TBD)
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Meshless FV in GANDALF

Volume partition according to the nearest particles (SPH Kernel)

m:/mwwx
1

i = ——W(|x = xj|,h(x))

w(x)

w(x) = Z W(lx = x;[, h(x))

New Meshless Methods Here (MFV, MFM)

Hopkins (2015)
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Meshless FV in GANDALF

The meshless equations of motion

Discretization of an integral solution to a scalar conservation law on a
number of particles at positions (x;)

d
a ViV Z ViFs;(xi) — Vi Fji(x;)] = Vi
J

Conservation of mass, momentum and energy

l% (ViUs;) + ZFZ']' - A =ViS
7]

Godunov-like finite-volume equations
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Meshless FV in GANDALF

Solving the mesh-less equations of motion

MUSCL-Hancock scheme

2nd order accurate gradient estimation used to extrapolate the cell

properties to the “cell boundaries”

Slope-limited, linear reconstruction of face-centered quantities
from each particle

extrapolated values are evolved over half a timestep

time-averaged fluxes for the timestep are derived from the solution
to the Riemann problem in the rest frame of the effective face
between two particles
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Shocks work in progress)

Moving particles Moving particles

Static particles (Meshless Finite-Volume) (Meshless Finite-Mass)
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Meshless FV : (work in progress)

Kelvin-Helmholtz instability : Static particles
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Meshless FV : (work in progress)

Kelvin-Helmholtz instability : Moving particles

density

05 =
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05 0 05

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015



Meshless FV in GANDALF

To be tested/implemented...

* Multiple timesteps

» Various equations of state (Isothermal, barotropic...)
» Sinks and N-body

» Thermodynamics: heating / cooling

Caveats

» Slope limiters

» Advection errors (reduced but not eliminated)

» Not thoroughly tested with gravity and N-bodly...
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Godunov methods in GANDALF

Running a meshless simulation in GANDALF

Parameters

e sim: Simulation type
sph = SPH (+ N-body) algorithm (default : ‘grad-h’ SPH)
gradhsph = ‘grad-h’ SPH simulation (+ N-body)
sm2012sph = Saitoh & Makino (2012) SPH (+ N-body)
meshlessfv = Meshless Finite-Volume algorithm (default : ‘mfvmuscl’)
mfvmuscl = Meshless FV MUSCL integration simulation

mfvrk = Meshless FV Runge-Kutta integration
nbody = N-body only simulation

Meshless finite-volume parameters

e riemann.solver : Riemann solver in FV scheme
exact = Exact Riemann solver (e.g. Toro 1999)

hllc = HLLC approximate Riemann solver

slope_limiter : Slope limiter for TVD condition
null = No limiting
zeroslope = Set all slopes to zero (effectively 1st order Godunov)
balsara2004 = Balsara (2004) slope-limiter
springel2009 = Original AREPO (Springel 2009) slope limiter

tess2011 = TESS slope limtier
gizmo = Original GIZMO paper (Hopkins 2015) slope limiter
minmod = simplified implementation of minmod slope limiter

zero.mass._flux : Use Meshless-Finite Mass scheme to prevent mass-flux between particles? (1 or 0)

static particles : Use static particles (Eulerian approach)? (1 or 0)
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