
Godunov methods in 
GANDALF

Stefan Heigl 
David Hubber 
Judith Ngoumou 

USM, LMU, München 

28th October 2015



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Why not just stick with SPH?

• SPH is perfectly adequate in many scenarios but can fail, or at least prove sub-optimal in 
certain astrophysical contexts, e.g. 
• Gases of different temperatures/specific entropies are in contact or mixing together 

(e.g. a hot gas bubble pushing on a cold background medium) 

• High artificial viscosity causes unphysically high dissipation (e.g. evolution of a 
protoplanetary disc)

Agertz et al. (2007)
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• Other methods, in particular Godunov methods, have proven 
themselves to handle such hydrodynamical cases better than SPH 

• However, Godunov methods have traditionally been used on static, 
Eulerian grid codes which introduce their own set of problems 
• Advection errors (i.e. numerical diffusion when the gas is travelling 

rapidly between grid cells) 
• Angular momentum conservation 

• In the last few years, hybrid algorithms that attempt to retain as many 
of the advantages of both approaches have been developed 
• Moving-mesh Finite-Volume Hydrodynamics (cf. AREPO, Springel 

2010) 
• Meshless Finite-Volume Hydrodynamics (cf. GIZMO, Lanson & Vila 

2008)

Why not just stick with SPH?
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‘Old-fashioned’ Finite Difference
• The Finite-Difference method is a discretization method, where a 

smooth function is discretized at regular points 

• Differential equations are solved by approximating derivatives by 
finite differences 

• e.g. using the Euler method: 

• This can be applied for gradients in space or time and for higher 
order derivatives 

• e.g. the heat equation, using a second-order central difference for the 
space derivative 
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Godunov methods : 
Finite Volume (FV) Hydrodynamics

• Sergei Godunov (1959) suggested a new approach to solving the Hydrodynamical equations 
which moved away from the traditional Finite-Difference scheme and towards a Finite-
Volume approach. 

• Instead of calculating effective forces from approximate gradients, the finite-volume approach 
calculates the flux of the hydrodynamical quantities at the cell boundaries. 

• As the flux entering a given volume equals the flux leaving the adjacent volume, this method 
is conservative. 

• The cell boundaries define a Riemann problem
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What is a Riemann solver?

• A Riemann solver is an algorithm for computing the solution of a 
simple Riemann problem, for example 
• The state of the intermediate shock structure 
• The flux of mass, momentum and energy across the shock 

• Why is using a Riemann solver important? 
• We could in theory compute the fluxes from the left and right 

states, but then we might fail at capturing shocks properly 
• A Riemann solver effectively allows us to capture shocks with the 

minimum required dissipation (BIG step up from schemes that 
use artificial viscosity, such as SPH) 

• The Godunov method uses an exact/approximate Riemann solver 
locally
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Exact Riemann solvers
• The exact Riemann solver gives the numerical exact solution to a Riemann problem 
• There is no closed-form solution to the Riemann problem, even not for ideal gases, 

not for the isothermal, nor the isentropic equations 
• Thus, one has to use an initial pressure guess and iterate to find the solution up to 

any desired accuracy 
• The flux is then calculated according to the wave pattern at the boundary
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Approximate Riemann solvers

• An approximate Riemann solver does what it says, it calculates an 
approximate solution to the Riemann problem 

• It is much faster than the exact Riemann solver as it uses no iteration 
• In most cases an approximate solution is perfectly adequate and can 

speed up the code considerably 
• In the rare cases that it fails (e.g. near a strong shock), we can switch 

to the exact Riemann solver 
• The most used approximate solvers are the Roe solver, the HLLE and 

the HLLC
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Integrating the Euler equations

• Our scheme now integrates the five Euler equations: 

• The new state is then: 

• The timestep size has to be confined in order to prevent wave interaction. This is 
usually done by the CFL-condition: 

• where the maximum wave speed is the maximum of the sum of the velocity and the 
sound speed in the domain 
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So, that’ll work right??? ….

• Well, sort of … 

• It’s correct, but has been horribly ‘smoothed-out’ over the discontinuities 
• This is caused by using the average cell values as the boundary conditions for the Riemann 

solver 
• Effectively leads to a spatially 1st-order scheme
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Moving to 2nd order 
MUSCL-Hancock scheme

• In the 1970s, Van Leer developed the Monotonic Upstream-Centered Scheme for 
Conservation Laws, aka MUSCL. 

• The main ingredient in MUSCL is that the gradient is calculated and used to extrapolate the 
cell properties to the cell boundaries 

• The extrapolated values are evolved half a timestep to make the scheme stable 

• The time evolved extrapolated values are then used to solve the Riemann problem
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Ooops, something’s gone wrong!

• If the code does not break (which it usually does), Godunov’s theorem states, that 
using a second order scheme will produce oscillations at large gradients 

• This is due to the fact that the slopes can develop overshoots if the cell gradient is 
steeper than the overall gradient 

• One can prevent these with the application of slope limiters
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Slope limiters 
A world of pain

• A slope limiter is an algorithm for preventing the ‘wiggling’ in the shock solution 
• Effectively the slope limiter forces the hydrodynamics to be solved in 1st-order near any 

discontinuity, such as a shock 
• Everywhere else where the flow is smooth, the hydrodynamics is solved in 2nd-order 
• Let’s consider this super simple slope limiter, called a minmod
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Finally, success
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Moving mesh FV schemes

• One can use the finite volume method on a moving grid, defined by particles 
similar to SPH 

• In order to define boundaries, one has to perform a Delauney triangulation 
• Most famous variant is the AREPO (Springel 2010) code 

COMING SOON!!!! 

Moving mesh in GANDALF:
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Meshless FV schemes

Hopkins (2015)
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Meshless FV schemes

Lanson & Vila (2008a,b):  

proposed an alternative hybrid algorithm, between traditional 
FV and SPH methods 

consistent and conservative mesh-free finite-volume method 

Gaburov & Nitadori (2011): 

Astrophysical Weighted Particle Magnetohydrodynamics 

Hopkins (2014, 2015): 

GIZMO Mesh-free hydrodynamic simulation Methods
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Meshless FV schemes

Advantages (Hopkins, 2015)

compared to SPH 

•proper convergence  

•good capturing of fluid-mixing 
instabilities 

•no artificial viscosity  

•more accurate sub-sonic flow 
evolution (reduced noise) 

•better shock-capturing 

compared to fixed grid methods 

•automatic adaptivity  

• reduced advection errors and numerical 
diffusion 

•velocity-independence of numerical 
errors  

•accurate coupling to N-body gravity 
solvers 

•good angular momentum conservation  

•elimination of grid alignment effects
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Meshless FV :  
Kelvin-Helmholtz instability 

Hopkins (2015)
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Meshless FV schemes
Hopkins  (2015)
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Meshless FV in GANDALF

Volume partition according to the nearest particles (SPH Kernel)

Hopkins (2015)
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Meshless FV in GANDALF

Conservation of mass, momentum and energy

The meshless equations of motion

Godunov-like finite-volume equations 

Discretization  of an integral solution to a scalar conservation law on a 
number of particles at positions
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Solving the mesh-less equations of motion 

• MUSCL-Hancock scheme  

• 2nd order accurate gradient estimation used to extrapolate the cell 

properties to the “cell boundaries” 

• Slope-limited, linear reconstruction of face-centered quantities 
from each particle 

• extrapolated values are evolved over half a timestep  

• time-averaged fluxes for the timestep are derived from the solution 
to the Riemann problem in the rest frame of the effective face 
between two particles

Meshless FV in GANDALF
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Shocks (work in progress)
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Meshless FV : (work in progress)  

Kelvin-Helmholtz instability : Static particles



“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015 

Meshless FV : (work in progress)  
Kelvin-Helmholtz instability : Moving particles
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Meshless FV in GANDALF
To be tested/implemented… 

• Multiple timesteps 
• Various equations of state (Isothermal, barotropic…) 
• Sinks and N-body 
• Thermodynamics: heating / cooling

Caveats 

• Slope limiters    
• Advection errors (reduced but not eliminated) 
• Not thoroughly tested with gravity and N-body…
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Godunov methods in GANDALF
Running a meshless simulation in GANDALF

Parameters


