

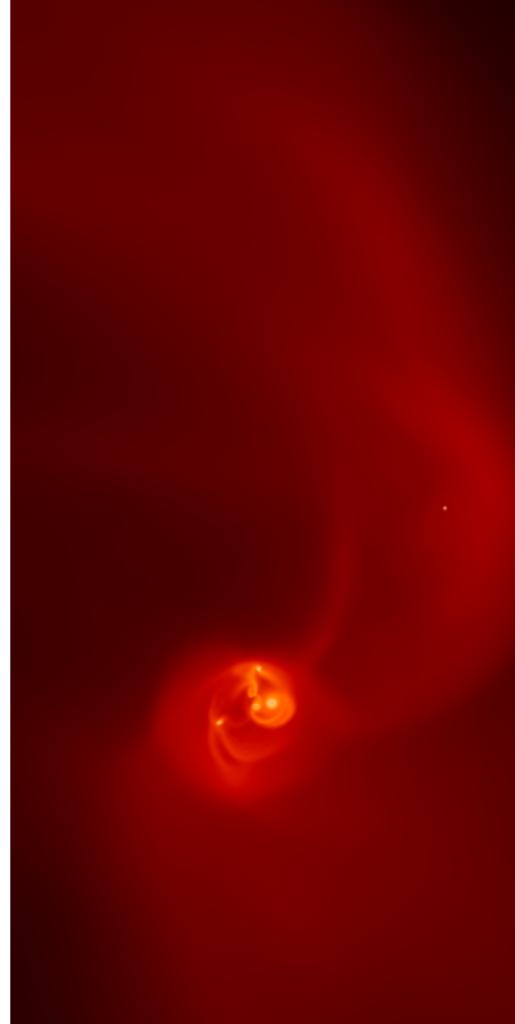
Excellence Cluster Universe

Godunov methods in GANDALF

Stefan Heigl David Hubber Judith Ngoumou

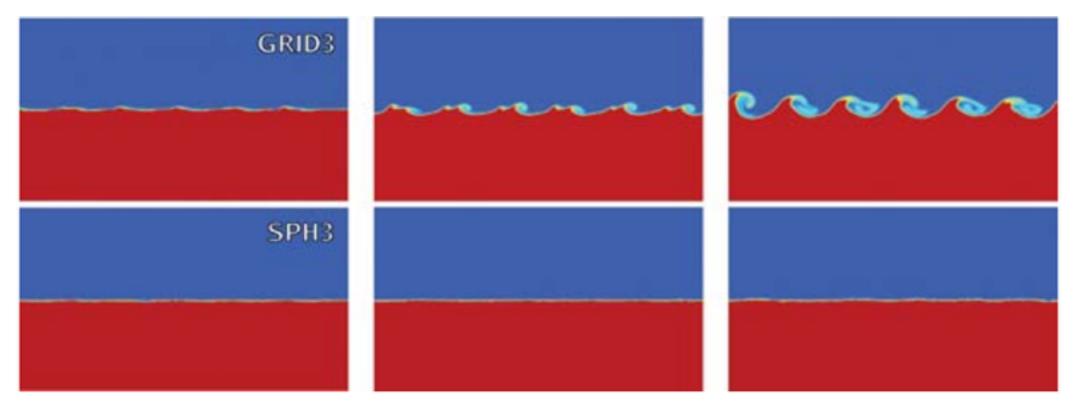
USM, LMU, München

28th October 2015



Why not just stick with SPH?

- SPH is perfectly adequate in many scenarios but can fail, or at least prove sub-optimal in certain astrophysical contexts, e.g.
 - Gases of different temperatures/specific entropies are in contact or mixing together (e.g. a hot gas bubble pushing on a cold background medium)



Agertz et al. (2007)

• High artificial viscosity causes unphysically high dissipation (e.g. evolution of a protoplanetary disc)

Why not just stick with SPH?

- Other methods, in particular Godunov methods, have proven themselves to handle such hydrodynamical cases better than SPH
- However, Godunov methods have traditionally been used on static, Eulerian grid codes which introduce their own set of problems
 - Advection errors (i.e. numerical diffusion when the gas is travelling rapidly between grid cells)
 - Angular momentum conservation
- In the last few years, hybrid algorithms that attempt to retain as many of the advantages of both approaches have been developed
 - Moving-mesh Finite-Volume Hydrodynamics (cf. AREPO, Springel 2010)
 - Meshless Finite-Volume Hydrodynamics (cf. GIZMO, Lanson & Vila 2008)

'Old-fashioned' Finite Difference

- The **Finite-Difference** method is a discretization method, where a smooth function is discretized at regular points
- Differential equations are solved by approximating derivatives by finite differences
- e.g. using the Euler method:

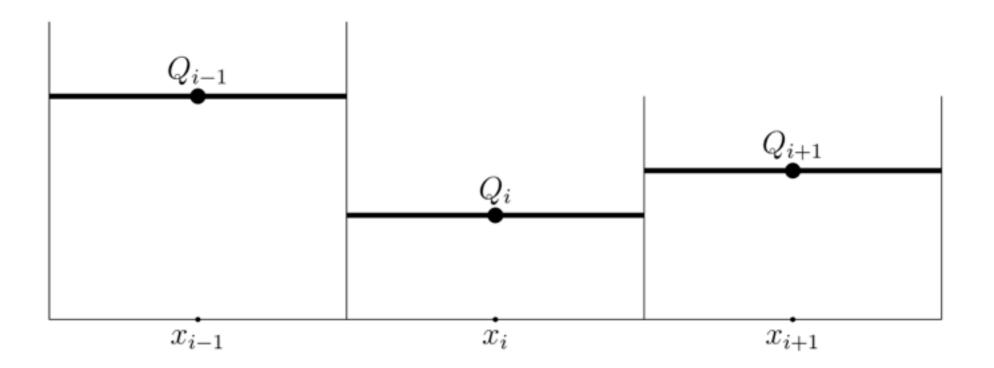
$$\frac{\partial Q(x)}{\partial x} \approx \frac{Q(x+h) - Q(x)}{h}$$

- This can be applied for gradients in space or time and for higher order derivatives
- e.g. the heat equation, using a second-order central difference for the space derivative $\frac{Q_i^{n+1} Q_i^n}{h} = \alpha \frac{Q_{i+1}^n 2Q_i^n + Q_{i-1}^n}{k^2}$

$$\Rightarrow Q_i^{n+1} = Q_i^n + \alpha \frac{h}{k^2} (Q_{i+1}^n - 2Q_i^n + Q_{i-1}^n)$$

Godunov methods : Finite Volume (FV) Hydrodynamics

- Sergei Godunov (1959) suggested a new approach to solving the Hydrodynamical equations which moved away from the traditional Finite-Difference scheme and towards a Finite-Volume approach.
- Instead of calculating effective forces from approximate gradients, the finite-volume approach calculates the flux of the hydrodynamical quantities at the cell boundaries.
- As the flux entering a given volume equals the flux leaving the adjacent volume, this method is **conservative**.
- The cell boundaries define a **Riemann problem**

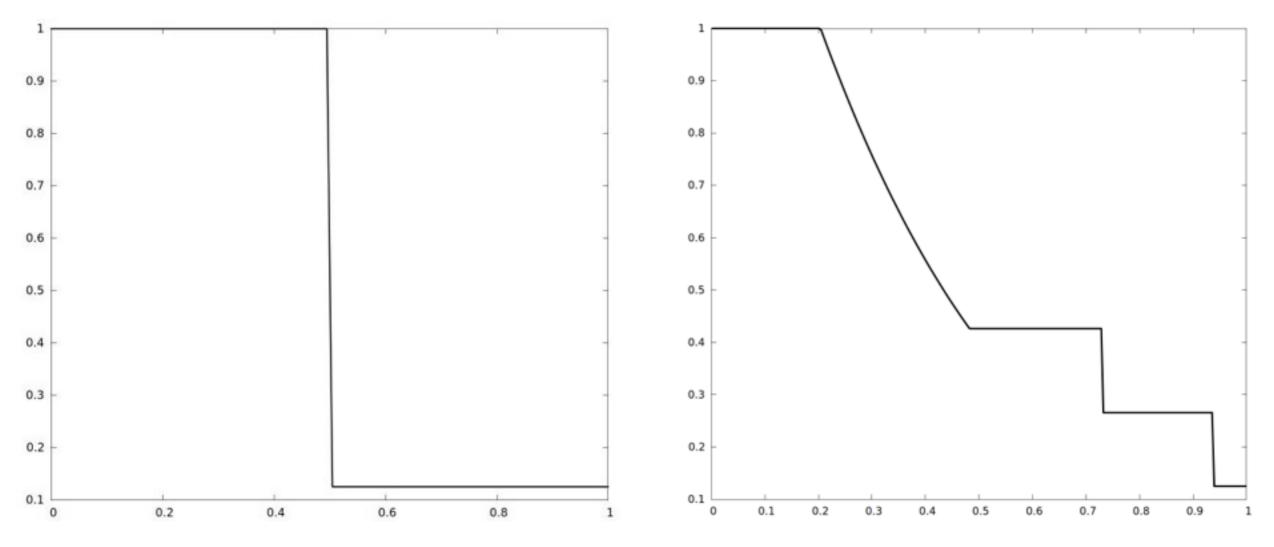


What is a Riemann solver?

- A **Riemann solver** is an algorithm for computing the solution of a simple Riemann problem, for example
 - The state of the intermediate shock structure
 - The flux of mass, momentum and energy across the shock
- Why is using a Riemann solver important?
 - We could in theory compute the fluxes from the left and right states, but then we might fail at capturing shocks properly
 - A Riemann solver effectively allows us to capture shocks with the **minimum required dissipation** (BIG step up from schemes that use artificial viscosity, such as SPH)
- The Godunov method uses an exact/approximate Riemann solver locally

Exact Riemann solvers

- The exact Riemann solver gives the **numerical exact solution** to a Riemann problem
- There is **no closed-form solution** to the Riemann problem, even not for ideal gases, not for the isothermal, nor the isentropic equations
- Thus, one has to use an initial pressure guess and **iterate** to find the solution up to any desired accuracy
- The flux is then calculated according to the wave pattern at the boundary



Approximate Riemann solvers

- An approximate Riemann solver does what it says, it calculates an approximate solution to the Riemann problem
- It is much faster than the exact Riemann solver as it uses **no iteration**
- In most cases an approximate solution is perfectly adequate and can speed up the code considerably
- In the rare cases that it fails (e.g. near a strong shock), we can switch to the exact Riemann solver
- The most used approximate solvers are the Roe solver, the HLLE and the HLLC

Integrating the Euler equations

• Our scheme now integrates the five Euler equations:

$$\begin{aligned} \frac{\partial}{\partial t}\rho + \nabla(\rho \mathbf{u}) &= 0\\ \frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla(\rho \mathbf{u} \otimes \mathbf{u}) &= -\nabla p\\ \frac{\partial}{\partial t}(\rho e_{tot}) + \nabla(\rho e_{tot}\mathbf{u}) &= -\nabla(\mathbf{u}p) \end{aligned}$$

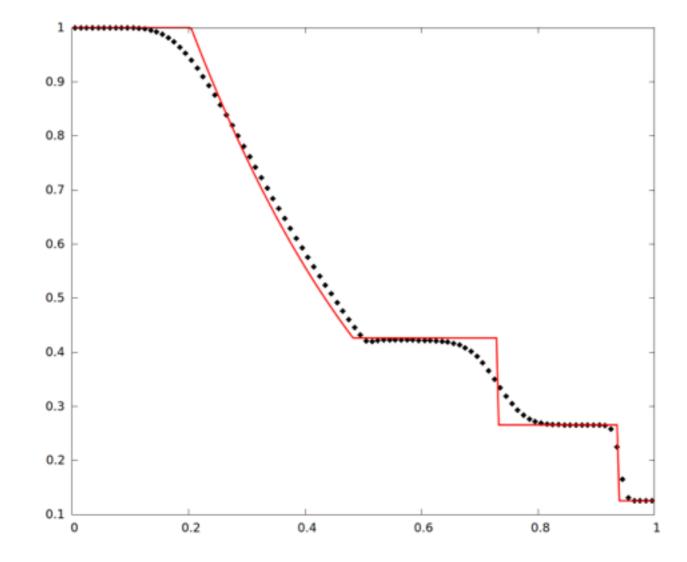
- The new state is then: $\mathbf{Q}_{i}^{n+1} = \mathbf{Q}_{i}^{n} + \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{i-1/2} \mathbf{F}_{i+1/2} \right]$
- The timestep size has to be confined in order to prevent wave interaction. This is usually done by the **CFL-condition**:

$$\Delta t = \frac{C_{cfl}\Delta x}{S_{max}} \qquad 0 < C_{cfl} \le 1$$

 where the maximum wave speed is the maximum of the sum of the velocity and the sound speed in the domain

So, that'll work right???

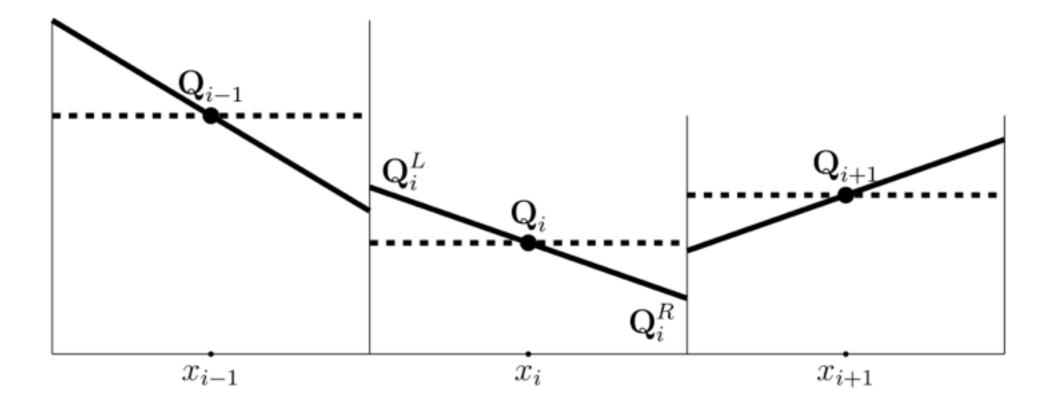
• Well, sort of ...



- It's correct, but has been horribly 'smoothed-out' over the discontinuities
- This is caused by using the average cell values as the boundary conditions for the Riemann solver
- Effectively leads to a spatially **1st-order scheme**

Moving to 2nd order MUSCL-Hancock scheme

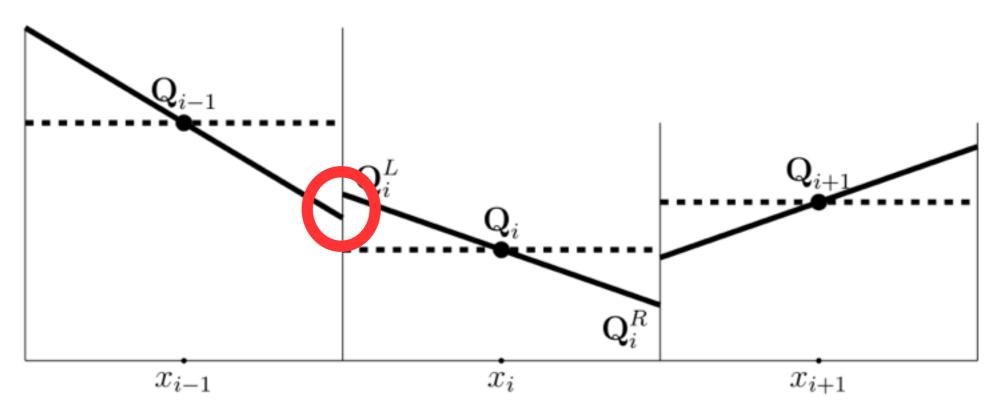
- In the 1970s, Van Leer developed the *Monotonic Upstream-Centered Scheme for Conservation Laws,* aka **MUSCL**.
- The main ingredient in MUSCL is that the gradient is calculated and used to extrapolate the cell properties to the cell boundaries
- The extrapolated values are evolved half a timestep to make the scheme stable



• The time evolved extrapolated values are then used to solve the Riemann problem

Ooops, something's gone wrong!

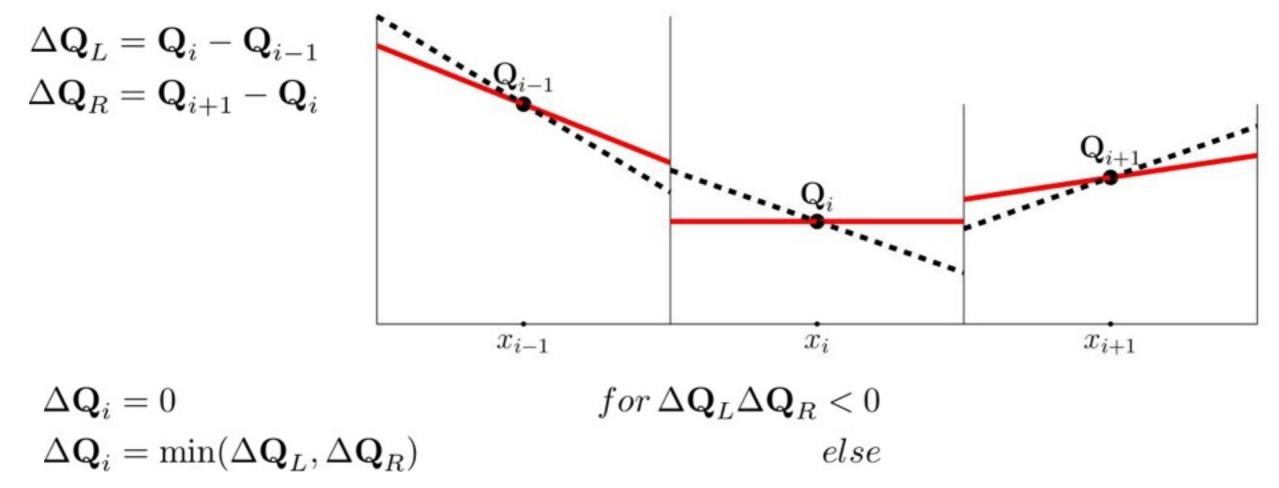
- If the code does not break (which it usually does), Godunov's theorem states, that using a second order scheme will produce **oscillations at large gradients**
- This is due to the fact that the slopes can develop **overshoots** if the cell gradient is steeper than the overall gradient



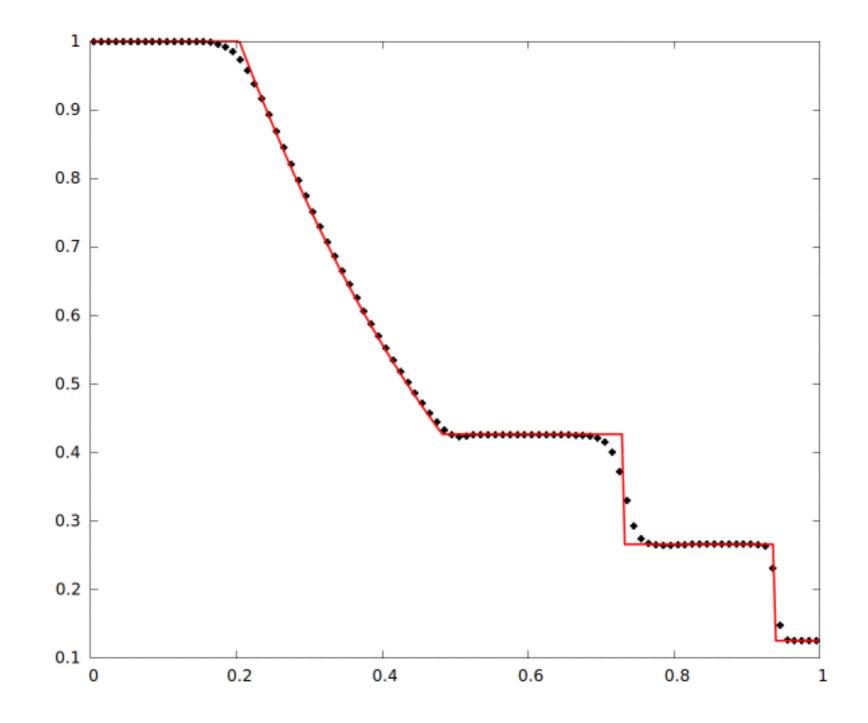
• One can prevent these with the application of **slope limiters**

Slope limiters A world of pain

- A slope limiter is an algorithm for preventing the 'wiggling' in the shock solution
- Effectively the slope limiter forces the hydrodynamics to be solved in 1st-order near any discontinuity, such as a shock
- Everywhere else where the flow is smooth, the hydrodynamics is solved in 2nd-order
- · Let's consider this super simple slope limiter, called a minmod



Finally, success

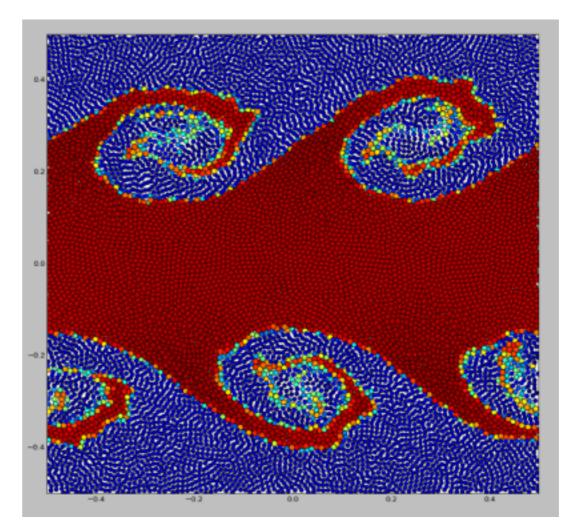


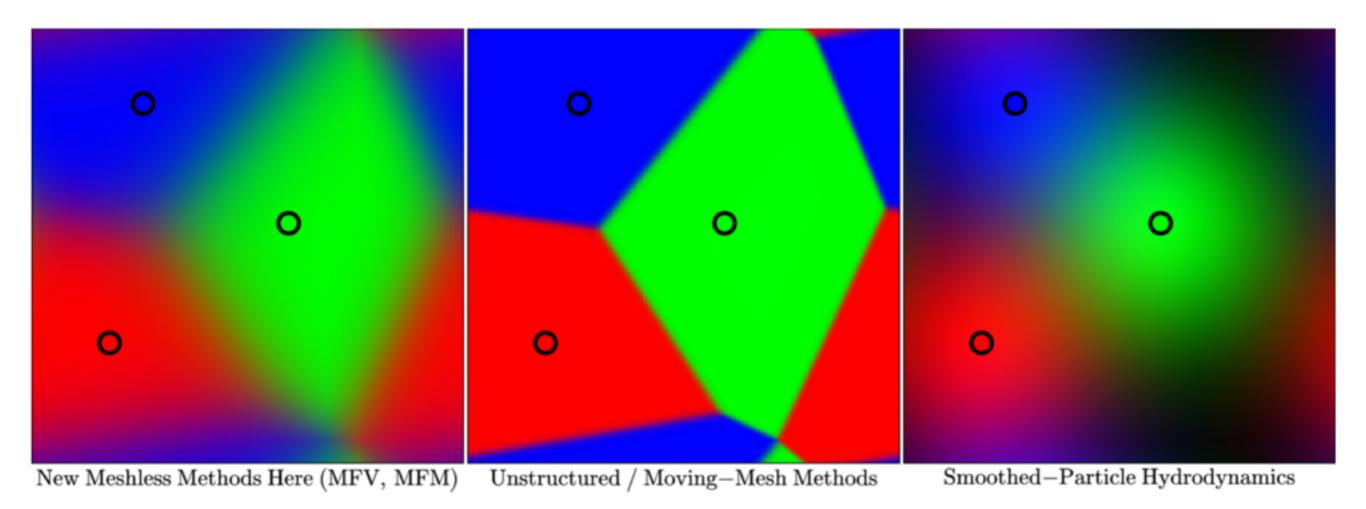
Moving mesh FV schemes

- One can use the finite volume method on a moving grid, defined by particles similar to SPH
- In order to define boundaries, one has to perform a **Delauney triangulation**
- Most famous variant is the AREPO (Springel 2010) code

COMING SOON!!!!

Moving mesh in **GANDALF:**





Hopkins (2015)

Lanson & Vila (2008a,b):

proposed an alternative hybrid algorithm, between traditional FV and SPH methods

consistent and conservative mesh-free finite-volume method

Gaburov & Nitadori (2011):

Astrophysical Weighted Particle Magnetohydrodynamics

Hopkins (2014, 2015):

GIZMO Mesh-free hydrodynamic simulation Methods

Advantages (Hopkins, 2015)

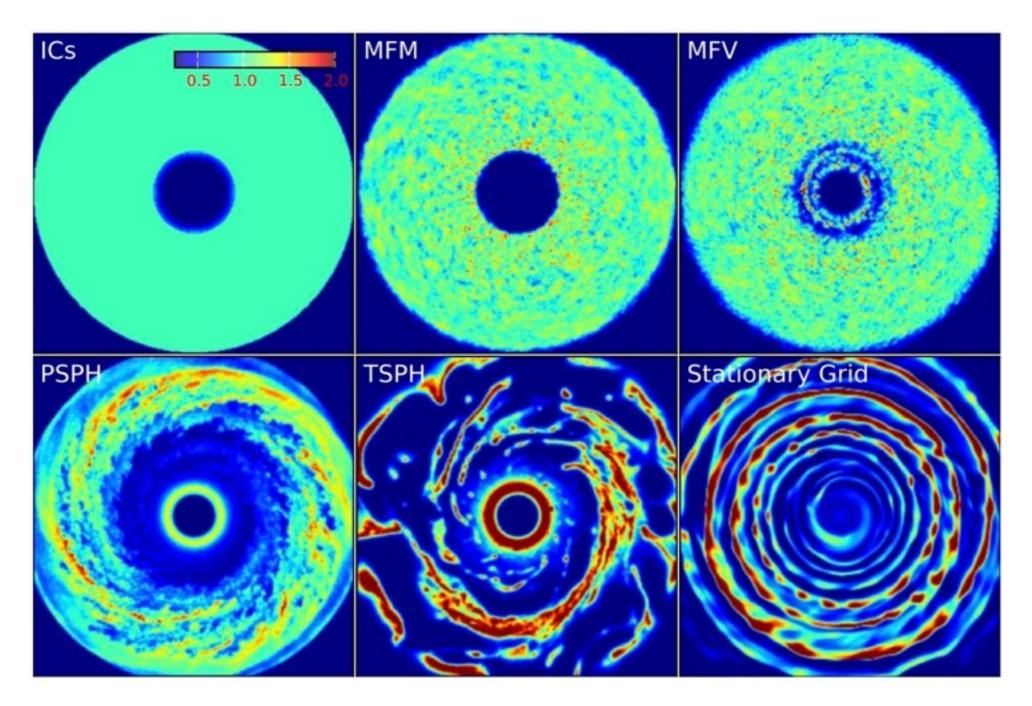
compared to SPH

- proper convergence
- good capturing of fluid-mixing instabilities
- no artificial viscosity
- more accurate sub-sonic flow evolution (reduced noise)
- better shock-capturing

compared to fixed grid methods

- automatic adaptivity
- reduced advection errors and numerical diffusion
- velocity-independence of numerical errors
- accurate coupling to N-body gravity solvers
- good angular momentum conservation
- elimination of grid alignment effects

Meshless FV : Kelvin-Helmholtz instability



Hopkins (2015)

Table 1. Summary of Some Popular Numerical Hydrodynamics Methods

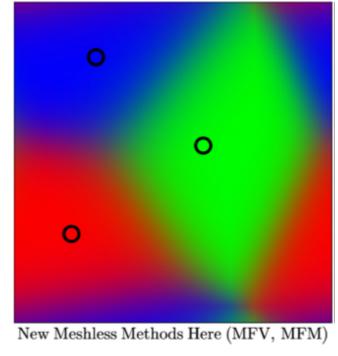
Conservative? Conserves Long-Time Number Method Consistency (Mass/Energy Angular Numerical Integration of Known Name /Order /Momentum) Momentum Dissipation Stability? Neighbors Difficulties Smoothed-Particle Hydro. (SPH) "Traditional" SPH 0 up to AV artificial 1 ~ 32 1 fluid mixing, noise, (GADGET, GASOLINE, TSPH) viscosity (AV) E0 errors 0 "Modern" SPH 1 up to AV AV+conduction $\sim 128 - 442$ excess diffusion, ~ (P-SPH, SPHS, PHANTOM, SPHGal) +switches E0 errors "Corrected" SPH 0 - 1× artificial ~ 32 errors grow × × (rpSPH, Integral-SPH, Morris96 SPH, viscosity non-linearly, Moving-Least-Squares SPH) "self-acceleration" 0 "Godunov" SPH 1 up to Riemann 1 ~ 300 instability, (GSPH, GSPH-I02, Cha03 SPH) gradient solver expense, E0 errors remain errors Finite-Difference Methods Gridded/Lattice Finite Difference 2 - 3× × artificial $\sim 8 - 128$ instability, × viscosity lack of (ZEUS [some versions], Pencil code) Lagrangian Finite Difference ~ 60 conservation. (PHURBAS, FPM) advection errors Finite-Volume Godunov Methods Static Grids 2-3 ~ 8 1 х Riemann ~ over-mixing, (ATHENA, PLUTO) solver (geometric) ang. mom., $\sim 8 - 125$ velocity-dependent (stencil) errors (VDE) $\sim 8 - 48$ Adaptive-Mesh Refinement (AMR) 2-3~ Riemann over-mixing, × 1 (ENZO, RAMSES, FLASH) (1)solver $\sim 24 - 216$ ang. mom., VDE, refinement criteria Moving-Mesh Methods 2 $\sim 13 - 30$ mesh deformation, 1 1 × Riemann (AREPO, TESS, FVMHD3D) solver ang. mom. (?), "remeshing" New Methods In This Paper Meshless Finite-Mass 2 Riemann ~ 32 remeshing noise 1 5 up to & Meshless Finite-Volume gradient solver 2 (MFM, MFV) (TBD) errors

Hopkins (2015)

Volume partition according to the nearest particles (SPH Kernel)

$$V_{i} = \int \psi_{i}(\mathbf{x}) \mathbf{d}^{\nu} \mathbf{x}$$
$$\psi_{i} = \frac{1}{\omega(\mathbf{x})} W(|\mathbf{x} - \mathbf{x}_{j}|, \mathbf{h}(\mathbf{x}))$$

$$\omega(\mathbf{x}) = \sum_{\mathbf{j}} \mathbf{W}(|\mathbf{x} - \mathbf{x}_{\mathbf{j}}|, \mathbf{h}(\mathbf{x}))$$



Hopkins (2015)

The meshless equations of motion

Discretization of an integral solution to a scalar conservation law on a number of particles at $positions(\mathbf{x}_i)$

$$\frac{d}{dt} \left(V_i U_i \right) + \sum_j \left[V_i F_i \psi_j(\mathbf{x}_i) - V_j F_j \psi_i(\mathbf{x}_j) \right] = V_i S_i$$

Conservation of mass, momentum and energy

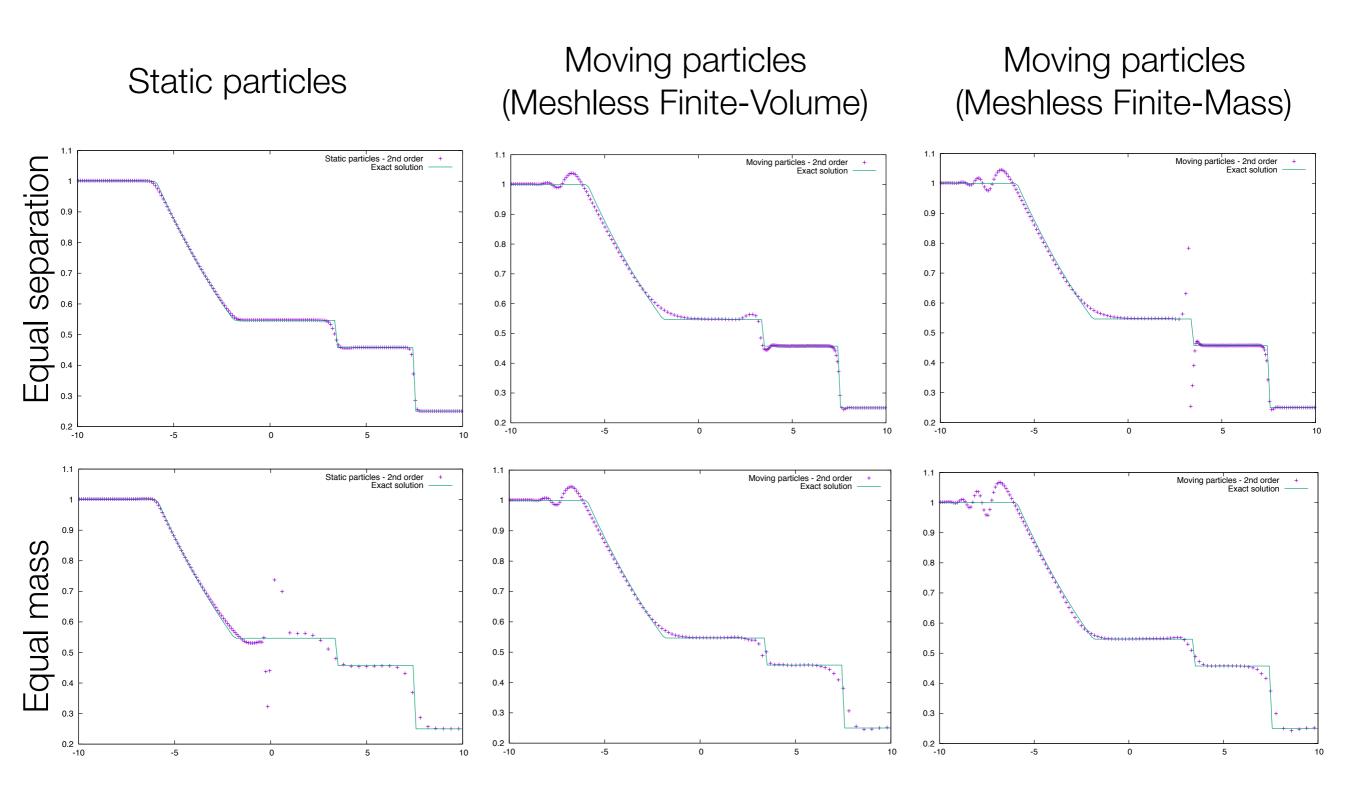
$$\frac{d}{dt}\left(V_i U_i\right) + \sum_j \mathbf{F}_{ij} \cdot \mathbf{A}_{ij} = V_i S_i$$

Godunov-like finite-volume equations

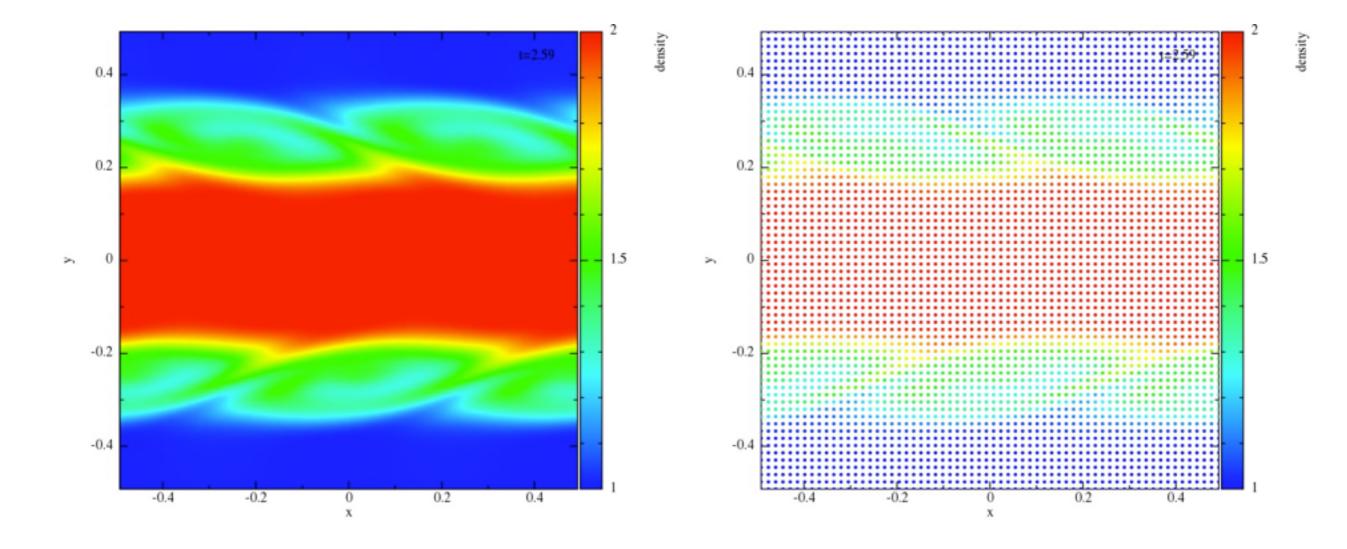
Solving the mesh-less equations of motion

- MUSCL-Hancock scheme
- 2nd order accurate gradient estimation used to extrapolate the cell properties to the "cell boundaries"
- Slope-limited, linear reconstruction of face-centered quantities from each particle
- extrapolated values are evolved over half a timestep
- time-averaged fluxes for the timestep are derived from the solution to the Riemann problem in the rest frame of the effective face between two particles

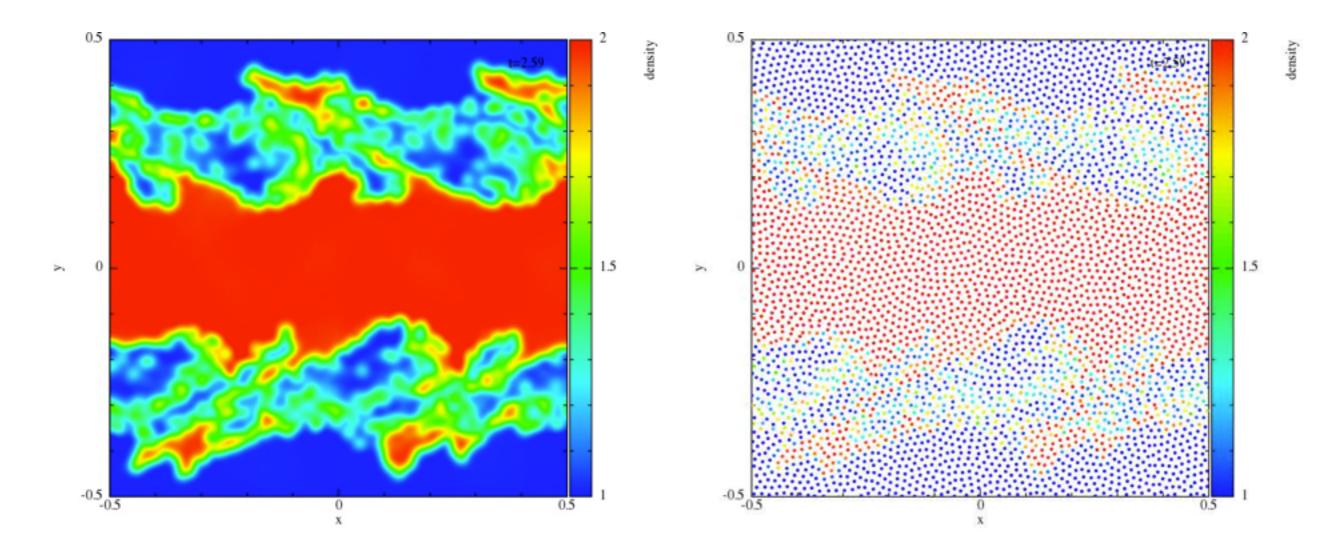
Shocks (work in progress)



Meshless FV : (work in progress) Kelvin-Helmholtz instability : Static particles



Meshless FV : (work in progress) Kelvin-Helmholtz instability : Moving particles



To be tested/implemented...

- Multiple timesteps
- Various equations of state (Isothermal, barotropic...)
- Sinks and N-body
- Thermodynamics: heating / cooling

Caveats

- Slope limiters
- Advection errors (reduced but not eliminated)
- Not thoroughly tested with gravity and N-body...

Godunov methods in GANDALF

Running a meshless simulation in GANDALF

Parameters

• sim: Simulation type

sph	= SPH (+ N-body) algorithm (default : 'grad-h' SPH)
gradhsph	= 'grad-h' SPH simulation (+ N-body)
sm2012sph	= Saitoh & Makino (2012) SPH (+ N-body)
meshlessfv	= Meshless Finite-Volume algorithm (default : 'mfvmuscl')
mfvmuscl	= Meshless FV MUSCL integration simulation
mfvrk	= Meshless FV Runge-Kutta integration
nbody	= N-body only simulation

Meshless finite-volume parameters

- riemann_solver : Riemann solver in FV scheme
 - exact = Exact Riemann solver (e.g. Toro 1999)
 - hllc = HLLC approximate Riemann solver
- slope_limiter : Slope limiter for TVD condition

null		=	No	limi	ting	
	-		-			

- zeroslope = Set all slopes to zero (effectively 1st order Godunov)
- balsara2004 = Balsara (2004) slope-limiter
- springel2009 = Original AREPO (Springel 2009) slope limiter
- tess2011 = TESS slope limiter
- gizmo = Original GIZMO paper (Hopkins 2015) slope limiter
- minmod = simplified implementation of minmod slope limiter
- zero_mass_flux : Use Meshless-Finite Mass scheme to prevent mass-flux between particles? (1 or 0)
- static_particles : Use static particles (Eulerian approach)? (1 or 0)