Microphysics and chemistry in hydrodynamical numerical simulations Part I: Overview

Wednesday 28th October, 2015 Gandalf School

Stefano Bovino

Hamburg Observatory

Modelling:

- chemistry and cooling determine the equation of state
- the equation of state of the gas regulates gravitational instabilities and fragmentation

Comparison with observations:

- Astrophysical objects are observed through the line emission of different atoms, ions, and molecules
- A comparison with hydro simulations requires to include these species in the chemical modelling

Standard periodic table

The Periodic Table of Elements

http://chandra.harvard.edu/xray_astro/chemistry.html

Astronomers periodic table

http://chandra.harvard.edu/xray_astro/chemistry.html

Observations

 More than 180 molecules, including organic molecules such as sugars and alcohols, have been discovered in space

Observations (cont'd) How do we observe molecules?

through emission/absorption lines!

fact to know:

 the internal energy is quantized

 $E_t = E_{el} + E_{vib} + E_{rot}$

radio	m/cm	
microwave	mm	10 ⁻³ m
infrared	μ m	10 ⁻⁶ m
visible	nm	10 ⁻⁹ m
ultraviolet	Å	10 ⁻¹⁰ m

In the last decade astrochemistry had access to powerful instruments

Observations via atom/molecule transitions

- \blacktriangleright electronic transitions \rightarrow Vis/UV (Hubble Space Telescope)
 - H₂ + atoms observed directly
 - ► large oscillator strengths¹, minor species can be detected
- vibrational transitions \rightarrow IR (Spitzer, Herschel)
 - both gas and solids observed
 - ► ices, silicates, oxides, PAH mid-far IR
 - ▶ molecules without permanent dipole moment (e.g. H₃⁺, CH₄, CO₂)
 - moderate oscillator strengths
- \blacktriangleright rotational transitions \rightarrow sub-mm (Herschel, ALMA)
 - bulk of interstellar molecules
 - ► high sensitivity to low abundances (down to 10⁻¹¹ x_H)

¹probability of photon absorption/emission between energy levels

Images from three of NASA's Great Observatories: Hubble, Spitzer, and Chandra

- hot hydrogen (orange)
- cool gas and dust (red)
- X-ray gas emission (blue)
- optical light from stars (yellow-green)

Molecules are excellent diagnostics of the physical conditions and processes in the regions where they reside $^{\rm 2}$

- excitation and abundances are determined by collision
- collisions depend on
 - gas temperature
 - density
 - radiation

²E. Van Dishoeck

Chemistry bottlenecks

$$\frac{dn_i}{dt} = \underbrace{\sum_{lm} k_{lm}(T)n_l(t)n_m(t)}_{lm} - \underbrace{\sum_{j} k_{ij}n_i(t)n_j(t)}_{j} \quad (1)$$

$$\frac{dT}{dt} = \frac{\gamma(n_i) - 1}{k_B \sum_{i} n_i} (\Gamma(n_i, T) - \Lambda(n_i, T)) \quad (2)$$

(i) Stiffness \rightarrow need for implicit solvers

- widely varying time scales
- very stiff problems \rightarrow computationally intensive
- accurate and efficient solver
- (ii) Network complexity \rightarrow need for reduction techniques
 - ► *a-priori* → reduce ODEs number (T. Grassi, **SB**+, MNRAS 2013)
 - on the fly \rightarrow reduce RHS terms (T. Grassi, SB+, MNRAS 2012)
- (iii) Rates availability and accuracy
 - basic information
- (iv) Connected with many physical processes
 - very CPU demanding
 - hydro-chemistry-radiation strongly coupled

Chemistry bottlenecks

Chemical network & Rate accuracy

- Network complexity
- Stiffness
- Connected with many physical processes

Chemical network: piece by piece

Problem 1 - nodes (species)

atoms (H, He, C, N, O, Si, Ne, S, P, F, Al, ...)? species (H, H2, CO, CH, ...)? cations and anions (H⁻, H⁺, C³⁺, CH⁻...)? isomers (HOC⁺, HCO⁺, ...)? isotopes ($^{12}C^{16}O$, $^{13}C^{16}O$, ...)? fancy stuff (dust, PAH, ...)?

Problem 2 - edges (reactions)

bimolecular (OH⁺ + e⁻ \rightarrow O + H)? photochemistry (H⁻ + $\gamma \rightarrow$ H + e⁻) cosmic rays (CO + CR \rightarrow C + O) cosmic rays secondary (CO + CRP \rightarrow C + O) 3-body (H + H + H₂ \rightarrow H₂ + H₂)

you can always expand a chemical network

Bare minimum chemical network

Problem 1 - nodes (species)

atoms (H, He, C, N, O, Si, Ne, S, P, F, Al, ...)? species (H, H2, CO, CH, ...)? cations and anions (H⁻, H⁺, C³⁺, CH⁻...)? isomers (HOC⁺, HCO⁺, ...)? isotopes ($^{12}C^{16}O$, $^{13}C^{16}O$, ...)? fancy stuff (dust, PAH, ...)?

Problem 2 - edges (reactions)

 $\begin{array}{l} \mbox{bimolecular (OH^+ + e^- \rightarrow O + H)?} \\ \mbox{photochemistry (H^- + γ \rightarrow $H + e^-$)} \\ \mbox{cosmic rays (CO + CR \rightarrow $C + O)} \\ \mbox{cosmic rays secondary (CO + CRP \rightarrow $C + O)} \\ \mbox{3-body (H + H + H_2 \rightarrow $H_2 + H_2$)} \end{array}$

you can always expand a chemical network

Bare minimum chemical network/2

	Н	H^+	H^{-}	e ⁻	γ	CR
Н						
H^+	x					
H^{-}	X	X				
e ⁻	X	X	X			
γ	X	X	X	X		
CR	X	X	X	X	X	

chemical reactions "commutes" $\begin{array}{c} {\rm H^{+}} + {\rm e^{-}} \rightarrow {\rm H} + \gamma \\ {\rm e^{-}} + {\rm H^{+}} \rightarrow {\rm H} + \gamma \end{array}$

	Н	H^+	H^{-}	e ⁻	γ	CR
Н						
H^+	х	X			X	X
H^{-}	х	Х	X	X		
e ⁻	х	Х	Х	X	X	X
γ	Х	Х	Х	Х	X	X
CR	х	Х	Х	Х	Х	Х

some pairs are impossible (e.g. $H^- + H^-$)

	Н	H^+	H^{-}	e-	γ	CR
Н	X	X				
H^+	х	Х			Х	Х
H^{-}	х	Х	Х	Х		
e^-	Х	Х	Х	Х	Х	Х
γ	Х	Х	Х	Х	Х	Х
CR	Х	Х	Х	х	Х	Х

some reactions lead to species \notin subset (e.g. H^- + $H \rightarrow H_2$ + $e^-)$

final set of reactions

Final network

H + e ⁻	\rightarrow	H+ + 2e-
H + e ⁻	\rightarrow	H^- + γ
$H + \gamma$	\rightarrow	$H^{+} + e^{-}$
H + CR	\rightarrow	$H^{+} + e^{-}$
$H^{+} + e^{-}$	\rightarrow	$H + \gamma$
$H^{+} + H^{-}$	\rightarrow	H + H
$H^- + \gamma$	\rightarrow	$H + e^{-}$
$H^- + H$	\rightarrow	$2H + e^{-}$
$H^- + CR$	\rightarrow	$H + e^{-}$

collisional ionization radiative attachment photoionization CR ionization recombination mutual recombination electron photodetachment collisional detachment CR detachment

The core of the problem:

$$A+B \xrightarrow{k(T)} C+D$$

$$k(T) = \left(\frac{8k_{B}T}{\pi\mu}\right)^{1/2} \frac{1}{(k_{B}T)^{2}} \int_{0}^{\infty} \sum_{\nu'j'} \sigma_{j'\nu' \leftarrow j=0\nu=0}(E) e^{-E/k_{B}T} E dE$$

$$\mathit{flux} = k(\mathit{T})\mathit{n}_{\mathrm{A}}(\mathit{t})\mathit{n}_{\mathrm{B}}(\mathit{t})$$

Rate accuracy-Methods

How to determine k(T)?

- Experimentally (lucky)
- Langevin (estimate)
 - valid for ion-molecule reactions
 - "exothermic", i.e. without barrier
 - temperature independent
- ab initio calculations (not always available)
 - solving the Schrödinger equation (2nd order coupled PDEs)

How to retrieve k(T)?

- ► Databases (KIDA, UMIST, ...)
- Literature search (best, but time-consuming)
- Educated guess (also strongly discouraged)

Chemistry bottlenecks

- Rate accuracy
- Network complexity
- Stiffness
- very CPU demanding

Networks as directed graph

Astrochemical networks

$\begin{array}{l} \text{NODES} \rightarrow \text{chemical species} \\ \text{EDGES} \rightarrow \text{conversion between chemicals} \end{array}$

- need for chemical network reduction techniques
 - ► a-priori based on topological properties (T. Grassi, SB+, MNRAS 2013)
 - on the fly based on the most important fluxes (T. Grassi, SB+, MNRAS 2012)

R. V. Solé & A. Munteanu 2007

Chemistry bottlenecks

- Rate accuracy
- Network complexity
- Stiffness
- very CPU demanding

DIFFERENT DEFINITIONS EXIST: a problem is stiff if

- in particular: fastly reacting components arrive in a very short time in their equilibrium and the slowly changing components are more or less fixed, i.e. stiff
- it contains widely varying time scales, i.e., some components of the solution decay much more rapidly than others.
- the step-size is dictated by stability requirements rather than by accuracy requirements.
- ► if explicit methods don't work, or work only extremely slowly.
- More generally, a problem is stiff if the eigenvalues of the Jacobian of *f* differ greatly in magnitude

Explicit vs Implicit methods

- Explicit: in order to evaluate y_{n+1}, we use information from time step n
- ► Forward Euler's method reminder $\rightarrow y_{n+1} = y_n + hf(t_n, y_n)$

it is a single-step method! $$\downarrow$$ each new time step computation as an initial value problem

Let's introduce the *implicit* methods:

- ► Backward Euler's method: $y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$ implicit
- ► it is an algebraic equation to be solved for y_{n+1}

Chemistry bottlenecks

- Rate accuracy
- Network complexity
- Stiffness
- connected with many physical processes
 - very CPU demanding

The microphysics

- chemistry is everywhere in our Universe
- observations provide spectra from electronic/rot./vib. transitions of different species
- chemistry essential for comparison with observations
- chemistry is troublesome
- chemistry coupled with many physical processes
- chemistry is computationally expensive but with the current machine power can be included (even large networks)

Chemistry-hydrodynamics coupling

Goals:

- hydro: Model the growth of structure in the universe
- \blacktriangleright chemistry: Model \rightarrow Chemical abundances \rightarrow Synthetic observations

Chemistry-hydrodynamics coupling (cont'd)

- ► What are the ingredients for a proper model? (tomorrow's talk)
- What are the pitfalls?

Two of the prevailing problems are

- adiabatic index (γ)
- the mean molecular weight (μ).
- strongly dependent on the chemical composition of the gas
- \blacktriangleright used to convert pressure \rightarrow energy \rightarrow temperature

$$p = (\gamma - 1)e, \qquad (3)$$

$$e = \frac{k_b T}{(\gamma - 1)\mu m_{\rm H}}, \qquad (4)$$

 Multi-fluid Advection and Conservation of Abundances (not for SPH, as mentioned by David)

()26

Chemistry couples through the energy equation as a source term

$$\frac{\partial(\rho e)}{\partial t} + \nabla[(\rho e + P)v] = S_e \tag{5}$$

Update a gas volume element at any time-step ($\gtrsim 10^6$ particles (gas units), $> 10^4$ time-steps)

- e.g. 1Dhydro+chemistry: \gtrsim 90% of the CPU time
- Most heavy part together with the solution of the Poisson equation

Problem: too many reactants (> 400) and too many reactions (> 4000)! Methods to solve ODE System:

- ▶ the chemistry is a complex problem
- no general codes to solve microphysics (in HD)
- only very specific codes around (env-dependent)
- chemistry mostly hard-coded
- often not updated chemistry
- approximations/assumptions (env-dependent) to speed-up
- numerically unstable solvers (sometimes)
- some attempts to have external libraries but not enough

KROME T. Grassi, **SB**+ MNRAS, 2014

better science through chemistry

- KROME is a package which helps users to build their own microphysics
- ► KROME is open source
- KROME is a pre-processor
- ▶ the core of KROME is a mix of PYTHON and FORTRAN 90.
- ► a chemical network is compulsory to run KROME
- ► to use KROME in your simulations you need to run ./krome first
- users functions are provided to an easy usage
- ► KROME reduces the hard-coding from the users
- ► to embed KROME into an external code requires a simple call
 - ► call krome(x(:), Tgas, dt)

Bitbucket and KROME a happy marriage

KROME is developed and maintained on Bitbucket

What is bitbucket?

Bitbucket is a web-based hosting service for projects that use **distributed revision control system (DRCS)**

- ► Git
- Mercurial

Main advantages (already discussed by Giovanni)

- ▶ it is not a centralized system (there is no central server)
- ► it is a peer-to-peer network
- ► you can work without being connected to a network

What does KROME include?

- Solving chemical networks (ODEs+Jacobian+sparsity+tables)
- Several chemical networks provided (from primordial up to >5k reacts)
- Photochemistry module per bins
- Cosmic rays (rate approximation, $\alpha \zeta_{CR}$)
- ► Atomic cooling (H, H⁺, He, He⁺, He⁺⁺, as Cen1992)
- ► H^{rv}₂ cooling (GP98+GA08), HD^{rv} (Lipovka+2005), CO cooling
- ► H^{cd}₂ cooling (Martin+98, Glover+Jappsen2007)
- Collisionally induced emission (CIE) cooling (Ripamonti+Abel2004)
- ► CI, OI, SiI, FeI, and ions cooling (Maio+2007, HM79, at runtime)
- Continuum (Omukai2000, Lenzuni+91)
- Compton Cooling (Cen 1992)
- Chemical heating including H₂ on dust (Omukai2000, HM79)
- Photoheating (*v*-dependent, GA08)
- $\blacktriangleright\,$ MRN profile for dust ($\propto a^{-3.5})$ for graphite and Si-based
- Dust growth by sticking (Dwek98)
- ► H₂ formation on dust (Cazaux+Spaans2009)
- patches available for 3D codes: Enzo, Ramses, Flash, Gasoline, and Mocassin, (Gandalf?)

Some work done with KROME

Some nice applications pursued with KROME

- formation of supermassive black holes³
- ► collapse of low-metallicity minihaloes⁴
- ▶ formation of primordial stars⁵
- chemical evolution of self-gravitating primordial disks ⁶
- formation of the first galaxies⁷
- ► the formation of very massive stars⁸
- study of ISM star-forming filaments⁹
- turbulent molecular clouds¹⁰
- galaxy evolution ¹¹
- ³Latif+, 2014,2015a.b ⁴Bovino+, 2014a
- ⁵Bovino+, 2014b
- ⁶Schleicher+, 2015
- ⁷Prieto+, 2015
- ⁸Katz+, 2015
- ⁹Seifried+, 2015
- ¹⁰Haugbølle+, 2015
- ¹¹Capelo+, 2015

Thank you for your attention!

