
Running Simulations
with GANDALF

David Hubber

USM, LMU, München
Excellence Cluster Universe,
Garching bei München

27th October 2015

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

The GANDALF parameters file

• The GANDALF parameters file is used to control almost all other aspects of the
simulation, the generation of initial conditions and of the algorithms used.

• The parameters file has a simple structure :

• There are way too many parameters to go through each in detail, so we’ll just go over
the broad categories of parameters available and concentrate on a few important ones

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Core parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Core parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Scaling parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Hydrodynamical parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

SPH parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Tree parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Gravity parameters

�

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Sink particle parameters

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Initial conditions generators in GANDALF

• GANDALF contains a variety of in-built initial conditions generators for :

• 1D Hydrodynamical tests (e.g. shock-tubes, blast waves)

• Multi-dimensional hydrodynamical tests (e.g. Sedov-Taylor explosion, Kelvin-
Helmholtz instability)

• Simple gravitational tests (e.g. free-fall collapse)

• Simple N-body tests (e.g. binary stars, triple stars, Plummer sphere)

• Simplified astrophysical test cases (e.g. Boss-Bodenheimer test)

• Complete astrophysical initial conditions (e.g. turbulent prestellar core)

• Feel free to try other test problems (although only some of them you’ll be able to plot
with a simple plotting program like gnuplot)

• If you have splash successfully installed, then try changing the output format to ‘sf’
and then plotting them in splash

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Compiling the code

• We wil compile GANDALF with the simplest possible set of options

• To compile the full C++ code AND the python library :

• To just compile the C++ executable :

CPP = g++
PYTHON = python
COMPILER_MODE = FAST
PRECISION = DOUBLE
OPENMP = 0
OUTPUT_LEVEL = 1
DEBUG_LEVEL = 0

FFTW libary flags and paths.
#--
FFTW = 0
FFTW_INCLUDE =
FFTW_LIBRARY =

GNU Scientific library flags and paths.
#---
GSL = 0
GSL_INCLUDE =
GSL_LIBRARY =

make -j executable

make -j

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Running simulations on the command-line

• Once compiled, the gandalf executable will be placed in the ‘bin’ sub-directory
located in the main gandalf directory :

• You can either :

• Run it with the absolute path (e.g. bin/gandalf), or

• Set your PATH directory to include the gandalf bin subdirectory

• To run a simulation using the parameters file ‘params.dat’, type :

bin/gandalf params.dat

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 1 : Run shocktube simulation in
GANDALF

• Let’s run some simple test problems with GANDALF

• From the ‘tests’ sub-directory, open the adshock.dat parameters file

• Run the simulation with

• The simulation should produce a series of output dumps of the form ADSHOCK1.su.
00001, ADSHOCK.su.00002, etc…OR ADSHOCK1.column.00001,
ADSHOCK1.column.00002 (if you selected column format)

• Plot the results with a simple plot program (e.g. gnuplot)

bin/gandalf tests/adsod.dat

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 2 : Modify parameters in adsod.dat

• Try experimenting with the parameters in the file, e.g.

• double the output frequency of snapshots

• double the number of particles in the simulation

• What happens if you reduce or even switch off artificial viscosity?

• change the SPH kernel

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Restarting simulations

• To restart a simulation using the last snapshot file generated, just run gandalf as usual
but with the ‘-r’ option added, i.e.

• The code produces a file called ‘runid.restart’ which contains the filename (and
format) of the last snapshot produced by the code

• This could be used when :

• the simulation has crashed (or the computer has crashed)

• the simulation endtime has been reached and you wish to extend the simulation

bin/gandalf -r params.dat

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 3 : Restarting simulations

• Run the simulation and kill it before it reaches the end (N.B. you might need to
increase the number of particles so it doesn’t run too fast).

• Restart the simulation using the ‘-r’ flag to verify it will successfully continue until the
end

• Try changing the ‘tend’ parameter and restarting

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 4 : Create a new simulation from a
parameters file

• Create a new parameters file (or copy an old one) to generate the following set of
initial conditions for a shock problem :

• Isothermal equation of state, temp = 0.5

• LHS, rho = 1.0, vx = 0.0

• RHS, rho = 0.5, vx = -0.2

• tend = 0.2

• Choose appropriate values for other important parameters

• Plot the results at the end

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Compiling and running GANDALF for
debugging

• GANDALF has a number of different options for helping with debugging

• COMPILER_MODE = DEBUG

• Disables some optimisations and enables the ‘-g’ flag (needed for debuggers)

• OUTPUT_LEVEL = 2

• Prints to screen more fine-grained information about where the code currently is running at

• DEBUG_LEVEL = 1

• Enables asserts in the code to help spot clear and quantifyable errors

• DEBUG_LEVEL = 2

• Enables more detailed (but very expensive) checking of individual algorithms

CPP = g++
PYTHON = python
COMPILER_MODE = FAST
PRECISION = DOUBLE
OPENMP = 0
OUTPUT_LEVEL = 1
DEBUG_LEVEL = 0

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Running GANDALF with gdb
(and other debuggers)

• When COMPILER_MODE = DEBUG, then you can run the code through the
debugger (e.g. gdb, lldb)

• To start the debugger (assuming gdb), type :

• To run a simulation with a given parameters file, type :

• If the code crashes before the end, you can try various commands:

• to look at the subroutine call try to find out where the code crashed

• to print the values of the variables

gdb bin/gandalf

run params.dat

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Quick reference list

• The debugger will stop automatically if you have a segmentation fault

• Once it’s stopped you can print the value of local variables

• bt prints the full stack (i.e. tells you in which function you are, and which function
called it, all the way up to main)

• list prints a few lines of code around the point where you stopped

• You can even execute your code one line at time using step (enters inside function
calls) and next (stops once the function has finished). Useful when you want to see
what the code is actually doing

• But true power comes with breakpoints -> tell gdb to stop at a particular line

• Use the following:

• and with watchpoints -> tell gdb to stop when a variable changes

break file.cpp:15

watch variable
watch *0x12345678

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 5 : Using the debugger 1

• Type in the following code in the file ‘debugtest.cpp’

• Compile with

• Now run with and without the debugger. See why a debugger is useful now?

gcc -o -g debugtest debugtest.cpp

#include <stdio.h>

void main()
{
 char *temp = "Paras";
 int i;
 i = 0;

 temp[3] = 'F';

 for (i=0; i<5; i++) printf(“%c\n", temp[i]);

 return 0;
}

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 5 : Using the debugger 2

• Locate and fix all problems with the debugger (even if your eagle-eye spots the
problem by looking at the code) by stepping in the code line by line

• Remember to restart the debugger each time you re-compile

#include <iostream>

int ComputeFactorial(int number) {
 int fact = 0;

 for (int j = 1; j < number; j++) {
 fact = fact * j;
 }

 return fact;
}

int main() {
 int input;
 std::cout<< "Enter a number to compute its factorial" << std::endl;
 std::cin >> input;

 int fac = ComputeFactorial(input);
 std::cout << "The result is " << fac << std::endl;
}

