G'l‘”"." ")’3

Excellence Cluster Universe

ISM-SPP’

Running Simulations
with GANDALF

David Hubber

USM, LMU, Minchen
Excellence Cluster Universe,
Garching bei Minchen

27th October 2015

The GANDALF parameters file

The GANDALF parameters file is used to control almost all other aspects of the
simulation, the generation of initial conditions and of the algorithms used.

The parameters file has a simple structure :

There are way too many parameters to go through each in detail, so we’ll just go over
the broad categories of parameters available and concentrate on a few important ones

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Core parameters

e ndim: Simulation dimensionality (1, 2 or 3)

e sim: Simulation type
sph = SPH (+ N-body) algorithm (default : ‘grad-h’ SPH)
gradhsph = ‘grad-h’ SPH simulation (+ N-body)
sm2012sph = Saitoh & Makino (2012) SPH (+ N-body)

meshlessfv = Meshless Finite-Volume algorithm (default : “mfvmuscl’)
mfvmuscl = Meshless FV MUSCL integration simulation

mfvrk = Meshless FV Runge-Kutta integration
nbody = N-body only simulation

e nbody : Main N-body integration algorithm
Ifkdk = 2nd-order Leapfrog kick-drift-kick
1fdkd = 2nd-order Leapfrog drift-kick-drift
hermite4 = 4th-order Hermite scheme
hermite4ts = Time-symmetric 4th-order Hermite scheme

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Core parameters

e in file form: Format of initial conditions file
column = Simple column data format

sf/seren_form = SEREN ASCII format
su/seren_.unform = SEREN binary format

e out_file form: Format of outputted snapshot files
column = Simple column data format
sf/seren_form = SEREN ASCII format

su/seren_unform = SEREN binary format
e tend : Termination time of the simulation (given in tunits)
e dt_snap : Snapshot time interval (given in tunits)

e tsnapfirst : Time of first snapshot (given in tunits)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Scaling parameters

e dimensionless : Are all quantities dimensionless? (0 or 1)

e routunit : Position unit
pc/kpc/mpc = parsec/kiloparsec/megaparsec

au = astronomical unit

r_sun = Solar radius

r_earth = Earth radius

cm/m/km = centimetre/metre/kilometre
e moutunit : Mass unit

m_sun = Solar mass

m_jup/m-_earth = Jupiter mass/Earth mass

g/kg = gram/kilogram

e toutunit : Time unit
yr/myr/gyr = year/megayear/gigayear
day = day

sec = second

e voutunit : Velocity unit
cm_s/m_s/km_s = centimetres/metres/kilometres per second
au._yr = astronomical units per year

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Hydrodynamical parameters

hydro_forces : Compute hydro forces? (1 or 0)

gas.eos : Gas particles equation-of-state

energy_eqn = Solve energy equation
isothermal = Isothermal EOS
barotropic = = Barotropic EOS (i.e. for mimicing isothermal + adiabatic phase during protostellar collapse)
barotropic2 = Similar to barotropic, but using discrete power laws rather than smooth change
rad-ws = EOS relating to Stamatellos et al. (2007) cooling method
energy-integration : Energy integration scheme (only applicable if solving the energy equation)
null = Energy equation not integrated separately
rad ws = Integrate energy terms using Stamatellos et al. (2007) method

gamma_eos : Ratio of specific heats for gas
temp® : (Isothermal) temperature (isothermal or barotropic EOS)

mu_bar : Mean gas particle mass (in units of hydrogen mass)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

SPH parameters

sph_integration : SPH particle integration scheme
Ifkdk = 2nd-order Leapfrog kick-drift-kick
Ifdkd = 2nd-order Leapfrog drift-kick-drift

kernel : SPH kernel function

m4 = M4 Cubic spline kernel
quintic = Quintic spline kernel
gaussian = Gaussian kernel (truncated at 3h)

Density

\ k'|\\'il)

avisc : Artificial viscosity options
none = No artificial viscosity
mon97 = Monaghan (1997) viscosity

acond : Artificial conductivity options
none = No artificial conductivity

44 36

-~
- L
o
i
4

price2008 = Price (2008) conductivity
wadsley2008 = Wadsley et al. (2008) conductivity

time_dependent_avisc : Morris & Monaghan time-dependent viscosity (1 or 0)
alpha_visc : (Maximum) value of alpha viscosity parameter
alpha_visc.min : Minimum value of alpha for time-dependent viscosity

beta_visc : Value of beta viscosity as a multiple of alpha

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Tree parameters

e neib_search : Neighbour searching algorithm

bruteforce = Brute-force (i.e. summation over all particles)
kdtree = Balanced kd-binary tree
octtree = Barnes-Hut octal tree

e Nleafmax : Maximum no. of particles allowed in tree leaf cell
e ntreebuildstep : Integer steps inbetween tree re-builds

e ntreestock : Integer steps inbetween tree re-stocks

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Gravity parameters

e self gravity : Compute gravitational forces? (1 or 0)

e gravity mac : Gravity-tree cell-opening criteria (N.B. always defulats to geometric for now)

geometric = Standard Barnes-Hut geomtric opening angle criterion
eigenmac = Compute eigenvalues of quadrupole moment tensor for MAC (Hubber et al. 2011)

e multipole : Multipole expansion for tree-gravity

monopole = Monopole-only terms for cell gravity
quadrupole = Include quadrupole moment terms for cell gravity
fast_ monopole = Compute monpoles more efficiently using Taylor expansion about cell COM

e thetamaxsqd : Maximum tree gravitational walk opening angle (squared)
e macerror : MAC error tolerance for individual cells PR

e external potential : External gravitational potential

none = No external potential VAW
vertical = Constant gravitational field
plummer = Plummer background potential /

e

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Sink particle parameters

sink_particles : Do stars/sinks accrete? (0 or 1)
create_sinks : Create new sink particles? (0 or 1)
smooth_accretion : Use smooth accretion? (O or 1)
rho_sink : Sink particle creation density (in cgs units)
alpha_ss : Sunyaev-Shakura alpha for smooth disc accretion

sink _radius : Sink particle radius (in units of smoothing length)

sink _radius_mode : How to calculate new sink radius
hmult = sink radius a multiple of SPH particle smoothing length

fixed = sink radius 1s fixed for all new sinks

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Initial conditions generators in GANDALF

GANDALF contains a variety of in-built initial conditions generators for :
1D Hydrodynamical tests (e.g. shock-tubes, blast waves)

Multi-dimensional hydrodynamical tests (e.g. Sedov-Taylor explosion, Kelvin-
Helmholtz instability)

Simple gravitational tests (e.g. free-fall collapse)

Simple N-body tests (e.g. binary stars, triple stars, Plummer sphere)

Simplified astrophysical test cases (e.g. Boss-Bodenheimer test)
Complete astrophysical initial conditions (e.g. turbulent prestellar core)

Feel free to try other test problems (although only some of them you’ll be able to plot
with a simple plotting program like gnuplot)

If you have splash successfully installed, then try changing the output format to ‘sf’
and then plotting them in splash

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Compiling the code

- We wil compile GANDALF with the simplest possible set of options

CPP = g++
PYTHON = python
COMPILER_MODE = FAST
PRECISION = DOUBLE
OPENMP =0
OUTPUT_LEVEL =1
DEBUG_LEVEL =0

FFTW libary flags and paths.

— _ —_ _ _ ——————— e
FFTW
FFTW_INCLUDE
FFTW_LIBRARY

0

GNU Scientific library flags and paths.

¥G¢SL - = 0__ -
GSL_INCLUDE =
GSL_LIBRARY =
- To compile the full C++ code AND the python library : ‘ make -j

- To just compile the C++ executable : ‘ make —-j executable

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Running simulations on the command-line

Once compiled, the gandalf executable will be placed in the ‘bin” sub-directory
located in the main gandalf directory :

You can either :
Run it with the absolute path (e.g. bin/gandalf), or
Set your PATH directory to include the gandalf bin subdirectory

To run a simulation using the parameters file ‘params.dat’, type :

bin/gandalf params.dat

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 1 : Run shocktube simulation in

GANDALF

Let’s run some simple test problems with GANDALF

From the ‘tests’ sub-directory, open the adshock.dat parameters file

Run the simulation with

bin/gandalf tests/adsod.dat

The simulation should produce a series of output dumps of the form ADSHOCKT .su.
00001, ADSHOCK.su.00002, etc...OR ADSHOCKT.column.00001,
ADSHOCKT1.column.00002 (if you selected column format)

Plot the results with a simple plot program (e.g. gnuplot)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 2 : Modity parameters in adsod.dat

Try experimenting with the parameters in the file, e.g.
double the output frequency of snapshots
double the number of particles in the simulation
What happens if you reduce or even switch off artificial viscosity?

change the SPH kernel

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Restarting simulations

To restart a simulation using the last snapshot file generated, just run gandalf as usual
but with the ‘-r’ option added, i.e.

bin/gandalf —r params.dat

The code produces a file called ‘runid.restart” which contains the filename (and
format) of the last snapshot produced by the code

This could be used when :

the simulation has crashed (or the computer has crashed)

the simulation endtime has been reached and you wish to extend the simulation

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 3 : Restarting simulations

Run the simulation and kill it before it reaches the end (N.B. you might need to
increase the number of particles so it doesn’t run too fast).

Restart the simulation using the ‘-r’ flag to verify it will successfully continue until the
end

Try changing the ‘tend’ parameter and restarting

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 4 : Create a new simulation from a

parameters file

Create a new parameters file (or copy an old one) to generate the following set of
initial conditions for a shock problem :

Isothermal equation of state, temp = 0.5
LHS, rho=1.0, vx = 0.0
RHS, rho = 0.5, vx =-0.2
tend = 0.2
Choose appropriate values for other important parameters

Plot the results at the end

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Compiling and running GANDALF for

debugging

GANDALF has a number of different options for helping with debugging

CPP = g++
PYTHON = python
COMPILER_MODE = FAST
PRECISION = DOUBLE
OPENMP =0
OUTPUT_LEVEL =1
DEBUG_LEVEL =0

COMPILER_MODE = DEBUG

Disables some optimisations and enables the ‘-g’ flag (needed for debuggers)
OUTPUT_LEVEL = 2

Prints to screen more fine-grained information about where the code currently is running at
DEBUG_LEVEL =1

Enables asserts in the code to help spot clear and quantifyable errors
DEBUG_LEVEL =2

Enables more detailed (but very expensive) checking of individual algorithms

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Running GANDALF with gdb

(and other debuggers)

When COMPILER_MODE = DEBUG, then you can run the code through the
debugger (e.g. gdb, lldb)

To start the debugger (assuming gdb), type :

Igdb bin/gandalfl

To run a simulation with a given parameters file, type :

|run params.dat I

If the code crashes before the end, you can try various commands:
to look at the subroutine call try to find out where the code crashed

to print the values of the variables

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Quick reference list

The debugger will stop automatically if you have a segmentation fault
Once it's stopped you can print the value of local variables

bt prints the full stack (i.e. tells you in which function you are, and which function
called it, all the way up to main)

list prints a few lines of code around the point where you stopped

You can even execute your code one line at time using step (enters inside function
calls) and next (stops once the function has finished). Useful when you want to see
what the code is actually doing

But true power comes with breakpoints -> tell gdb to stop at a particular line

Use the following: break file.cpp:15

and with watchpoints -> tell gdb to stop when a variable changes

watch variable
watch *0x12345678

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 5 : Using the debugger 1

Type in the following code in the file ‘debugtest.cpp’

#include <stdio.h>
void main()

{

char *temp = "Paras";

int 1;

1 =0;

temp[3] = 'F';

for (1=0; 1<5; 1++) printf(“%c\n", temp[i]);

return 0;

Compile with

gcc —0 —g debugtest debugtest.cpp

Now run with and without the debugger. See why a debugger is useful now?

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 5 : Using the debugger 2

#include <iostream>

int ComputeFactorial(int number) {
int fact = 0;

for (int 3 = 1; j < number; j++) {
fact = fact * j;
}

return fact;

}

int main() {
int input;
std: :cout<< "Enter a number to compute its factorial" << std::endl;
std::cin >> 1input;

int fac = ComputeFactorial(input);
std::cout << "The result 1s " << fac << std::endl;

Locate and fix all problems with the debugger (even if your eagle-eye spots the
problem by looking at the code) by stepping in the code line by line

Remember to restart the debugger each time you re-compile

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

