
Welcome to C++

David Hubber
!
USM, LMU, München
Excellence Cluster Universe,
Garching be München
!
26th Sept 2015

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Why C++?
What was wrong with Fortran?

• C++ is an object oriented language, which has many advantages in big coding
projects over traditional procedural languages (such as Fortran).

• Object-oriented programming generally leads to more modular coding, which
improves code reability

• It also allows more natural code re-use (and in tandem reducing code duplication)
through inheritance

• Even if you don’t want to use advanced C++ features, you can still use the code in
a simple procedural way

• C++ supports generic programming, which allows generic functions to be constructed
reducing code duplicaition

• Outside of science, C++ is one of most used languages in software engineering and is
a useful addition to your CV.

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Course Philosophy

• First of all, this small crash-course will NOT make you a C++ expert overnight!

• There is no possible way we can go through all of C++ in one day!

• Instead this course is designed to

• Help people who already know how to program (i.e. hopefully you guys) to bridge
over to C++

• Introduce and practice some of the concepts in object-oriented programming that
are then used in GANDALF

• Hopefully convince you of the usefulness of object-oriented programming and to
use it in the future

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Python

Fortran

C++

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Structure of this crash-course

• Basic usage of C++ will be covered by a short overview of the most important features
of the language

• However, most of the ‘trivial’ questions will hopefully be covered by the C++
phrasebook so we will not cover those directly (so please look there before asking
any questions).

• Next, we will discuss some of ‘newer’ features in C++, such as object-oriented
programming, templates and inheritance, with small examples and practical exercises

• Then we have a cup of tea or coffee to recharge!

• Finally, we (i.e. you) will attempt to write a small object-oriented program in C++

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 1 : Hello World

// Hello World - my 1st C++ program
#include <iostream>
!
int main()
{
 std::cout << "Hello World!" << std::endl;
 return 0;
}

iostream is a C++ library
containing various IO functions

main is the start point of any C++
code. Every C++ program must

have one, and only one main
function (similar to program in

Fortran)

std::cout is an IO function for
printing strings (and other

variables) to screen

IMPORTANT! - Every regular C++ line must
end with a semi-colon. Most compiler errors
result from forgetting it (Bet you a pint of beer

you forget one this week!!)

Comments in C++ can be written with ‘// comment here’

The function code is contained within
the ‘squigly brackets’, i.e. { …. }

• Type this into the file ‘HelloWorld.cpp’

Functions should return a value
of the same type as the function

(i.e. in this case, int)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Compiling and running ‘Hello World’

• To compile the program, type

where ‘c++’ is the name of the C++ compiler (e.g. g++, clang++, icpc)

• And then running the program should give the output :

c++ -o hello.exe HelloWorld.cpp

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Basics of C++

• C++ programs usually comprise of two main file types :

• Header files (*.h, *.hpp) - contain definitions, interfaces and variables

• Source files (*.c, *.cpp, *.cxx) - contains the source code itself

• C++ programs MUST contain one and only one main function :

• This is the entry and exit point of the program when run

• C++ is a case-sensitive language

• All regular lines of C++ code MUST END with a semi-colon character, i.e. a ‘;’

• If anyone gets through this course WITHOUT forgetting a semi-colon when
compiling, I’ll buy them a beer!!

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Data types in C++
C++ data types

int i; // 32-bit integer
!
long int j; // 64-bit integer
!
unsigned int k; // 32-bit integer, positive only
!
bool flag; // Boolean/logical flag
!
float x; // 32-bit floating point
!
double y; // 64-bit float
!
char letter; // Single character string
!
std::string name; // 'std' variable length string

integer :: i
!
integer(kind=8) :: j
!
!
!
logical :: flag
!
real :: x
!
real(kind=8) :: y
!
character :: letter
!
character(len=100) :: name

Equivalent Fortran types

• Unlike Fortran, you can declare C++ variables ANYWHERE in a function (but before the variables is
actuallyused)

• You can also initialise a variable in the declaration, e.g.

!
• To declare a variable as a constant, add the keyword ‘const’

int i = 100;
std::string name = "Fred";

const int N = 10;

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

User-defined data types : structs

• structs are user-defined data structures that can contain any combination of the basic
C++ data types

struct Particle {
 int id;
 float m;
 float r[3];
 float v[3];
 float a[3];
};

• They are potentially very powerful in :

• Easily creating data types to represent different complicated things with different
data types (NOT possible with simple arrays)

• All the data for a single instance of the struct (e.g a single particle in this simple
example) is contiguous in memory, i.e. more cache efficient

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Functions in C++

• Functions in C/C++ require

• An argument list (even if it’s nothing/void)

• A return type (even if it’s void)

• All the function code to be in { ….. }

!
!
!

• The function then may simply be called with

!
!

• The function may also be called without recording the return value

int AddNumbers(int a, int b) {
 int c = a + b;
 return c;
}

int total = AddNumbers(1, 3);

AddNumbers(1, 3);

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 2 : Simple programs

• Write a function to compute and return N-factorial (i.e. N!). Print the final value out
to the screen.

• Modify the previous program to allow the user to input N from the command line.

• Modify the program to repeatedly ask for and compute the factorial. Exit the program
when a negative input is given.

• What is the maximum value of N you can use before the program breaks down? Why
is this?

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Arrays in C++

• Static arrays (i.e. created at compile time) can easily be created in C/C++ just like
declaring a normal variable

!
!

• If required, arrays have to be initialised

!
!

• Important : Note that arrays are indexed from 0 to N-1, so in the example above with
ids[10], the first element is id[0] and the final element is id[9]

• Arrays can also be dynamically allocated in C++

• Before we can discuss allocation of arrays, we must learn about pointers!

int ids[10];
float r[3];
float v[10][3];

int ids[10] = {0};
for (j=0; j<10; j++) ids[j] = 0;

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Pointers!
With great power comes great responsibility

• Pointers are one of the most powerful and deadly forces known to C++ programmers

• In their most basic form, pointers simply point at an address in memory

Address 1 2 3 4 5 6

Variable x xptr

Value 1.5 3

float x; // Basic variable
x = 1.5f; // Set value of variable
!
float *xptr; // Pointer to a float variable
xptr = &x; // Set pointer to point at address of variable 'x'

std::cout << "xptr : " << xptr << std::endl; // Outputs '3'
std::cout << "x : " << x << std::endl; // Outputs '1.5'
std::cout << "*xptr : " << *xptr << std::endl; // Also outputs '1.5'

• The contents of the address itself can be accessed with the * operator

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Pointers!
What’s the point?

• The big question to some people might be ‘How can this possibly be useful??’

• Pointers have a range of uses

• They are used to allocate memory

• They can be used to track variables or arrays directly without copying (especially
useful if several places need to know the value of a variable)

• This are used to pass arrays as arguments in functions (related to previous point)

• However, they also have some drawbacks

• If the variable or array goes out of scope but the pointer is still active, then the
pointer is therefore pointing to nothing at all; called a dangling pointer

• If there are bugs involving pointers, they can lead to memory corruption which
can be hard to track down

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Allocating memory in C++

• Memory is allocated in C++ using the new operator

• The memory can be deallocated using the delete operator

float *x;
x = new float[100];

struct Complex {
 float re;
 float im;
};
Complex *com;
com = new Complex[200];

delete[] com;
delete[] x;

• These can now be accessed as normal arrays x[0] = 0.0f;
!
com[10].re = 1.0;
com[10].im = 0.0;

• Note that forgetting to deallocate arrays when leaving a function can lead to a
memory leak

• It can be used on either regular data types (e.g. int, float)
or on dervied data types (i.e. structs)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Arrays and pointers

• When it comes to passing arrays as function arguments, arrays are represented a
simple pointer (in fact, many books will say that “Arrays ARE pointers”)

• In fact, when an array is passed as an argument, only the pointer itself is ever passed
(which points to the beginning of the array in memory)

float sum_array(int N, float *values) {
 int i;
 float sum = 0.0f;
 for (i=0; i<N; i++) sum += values[i];
 return sum;
}

• However, the function only knows the beginning of the array, and not the size or the
end.

• Therefore, if you try to access beyond the end of an array (e.g. values[N], values[N+1],
etc..), you will get total garbage AND the compiler or program won’t complain!

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 3 : Pointers

• Write a small program that creates a simple variable i and a pointer to it, iptr

• Experiment with changing the values of i and iptr. What happens if you change the
value of i? What happens if you change the value of iptr?

• Write a program that calculates and stores the value of N! in an allocated array up to a
given size (user input from the command line). Write all values to screen from the
array.

• Print the values of the array pointer before allocation, after allocation and finally after
deallocation

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

What exactly is an ‘object’?

• An object in a programming sense is very similiar to how we might describe an object
in real-life. Take for example a car :

• It has properties, such as its colour, size, top speed, etc.. (similar to variables)

• It can do things, such as drive forward, reverse, beep the horn, etc.. (similar to
functions)

• In Astrophysics, we could take a star for example :

• Mass, luminosity, radius, position, velocity, etc..

• Exerts/feels gravitational force, moves, explodes, etc..

• However, objects can also be more abstract things that have properties and functions,
like algorithms, e.g. hydrodynamics algorithm

• Fluid density, velocity, internal energy, etc …

• Compute Euler Equations, move/transfer fluid, etc..

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Anatomy of a class

class Car {
!
 public:
 bool automatic;
 int numDoors;
 int colour;
 string numberPlate;
!
 Car(int, string);
 ~Car();
!
 bool Accelerate(float);
 bool Brake();
 float TurnWheel(float);
 bool TurnKey(bool);
!
!
 private:
 int numCylinders;
 bool engineActive;
 float brakeTemperature;
 float horsePower;
!
 bool ApplyBrakeDiscs();
 bool InjectPetrolIntoEngine(float);
!
};

{
{
{
{
{

Public variables
(anyone can see and modify these)

Public functions
(anyone can call these)

Private functions
(only internal functions can call these)

Private variables
(only internal functions can see and modify these)

Constructor & destructor functions
(More about these soon)

Car.h

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Functions in classes

• Functions in classes (usually defined in say, “Car.cpp”) must be written using the class
name appended to the function name as follows

#include "Car.h"
!
// Constructor
Car::Car(int _colour, string _numberPlate) {
 automatic = false;
 numDoors = 4;
 colour = _colour;
 numberPlate = _numberPlate;
}
!
// Destructor
Car::~Car() {
}
!
// Public functions belonging to class
bool Car::Accelerate(float accelRate) {
 return InjectPetrolIntoEngine(accelRate);
}
!
bool Car::Brake(void) {
 return ApplyBrakeDiscs();
}

Car.cpp

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

What is a constructor exactly?

• Following our idea of an object being like some real-life entity, like a car, the car
doesn’t just build itself right? Your car has to be built by a mechanic in a workshop or
a factory, and built to whatever specifications (e.g. colour, tyre choice) the buyer
demands!

• So, a constructor ‘builds’ the object for you, by allocating the memory you need for
your object and setting values for the variables

• An object can be constructed in the same way a normal variable is declared (except
including the constructor parameters), i.e.

Car myCar(red, "GANDALF");

Car *myCar;
myCar = new Car(red, "GANDALF");

• Alternatively, if the variable is declared as a pointer, it can be constructed with the
new command, i.e.

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

What is a constructor exactly?

• Another important reason to use constructors is for variable initialisation.

• How many in this room spent minutes/hours/days/weeks/months debugging some
code only to find that you forgot to initialise the variables?

• OR perhaps more importantly, you assumed the compiler would set the value to zero
and it DIDN’T!

• With a constructor, you have complete power to initialise the values to whatever you
want and ensure it is always initialised whenever a new object is created

Car::Car(int _colour, string _numberPlate) {
 automatic = false;
 numDoors = 4;
 colour = _colour;
 numberPlate = _numberPlate;
}

Car *myCar;
myCar = new Car(red, "GANDALF");

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 4 : A basic vector class

• Complete the Vector class, placing the source code for the functions in a ‘Vector.cpp’
file (remember to include the Vector.h file)

• Create a main program which uses the Vector class. Check that it compiles and works
correctly. Output the magnitude and unit vector of some vector.

• Create a function (external to the class) that takes two Vectors as arguments and
returns the scalar product

class Vector
{
public:
 float v[3];
!
 Vector();
 ~Vector();
!
 float Magnitude();
 Vector UnitVector();
};

Vector.h

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Templates : What are they?

• Consider you are writing some function that you might need to use with many
different data types (e.g. min/max), then how do you do it without having to do this?

int min(int a, int b) {
 if (a < b) return a;
 else return b;
}
!
long int min(long int a, long int b) {
 if (a < b) return a;
 else return b;
}
!
float min(float a, float b) {
 if (a < b) return a;
 else return b;
}
!
etc..

• Imagine there was some ‘magical’ way that you could write the function just once and
it would work for all possible valid data types!

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Templates : Simple example

• A template is a declaration that uses a generic data type (often called ’T’) to create the
function (at compile time) for whichever specific data type you need

• For our min function example, the templated function would be written as :

template <typename T>
T min(T a, T b) {
 if (a < b) return a;
 else return b;
}

compare to
float min(float a, float b) {
 if (a < b) return a;
 else return b;
}

• Whenever our ‘min’ function is called in the code, the compiler checks the types of
the arguments, and if it matches, then it generates the function for that type
automatically.

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 5 : Simple template example

• In a C++ program, this could be used in the following way

#include <iostream>
!
template <typename T>
T min(T a, T b) {
 if (a < b) return a;
 else return b;
}
!
int main() {
 float a = 1.0f, b=2.0f;
 float minval = min(a, b);
 std::cout << "Minimum value : " << minval << std::endl;
}

• Write this function to a file, compile it and run it.

• Try other variable types (e.g. int, double) to show it still works

• What happens if the types of a and b don’t match?

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Template parameters

• Templates can also be used to generate functions using
some specific value of a parameter

• Take our particle data structure that we defined earlier :

struct Particle {
 int id;
 float m;
 float r[3];
 float v[3];
 float a[3];
};

template <int ndim>
struct Particle {
 int id;
 float m;
 float r[ndim];
 float v[ndim];
 float a[ndim];
};

Particle<1> part1d;
Particle<2> part2d;

• What if we wanted to use this in 1 or 2 dimensions? We
could write out a 1 or 2 dimensional version, but this
would be a waste again!

• Instead we can define a template parameter for the
number of dimensions

• We could then declare this as a variable in the code as
any other variable but with the template parameter value
added in angular brackets, < … >, e.g.

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Templating a class

• This approach can also be used to template an entire class

• However ALL functions external to the class definition (e.g. the class functions in the
cpp files) must have the template declaration

template <int ndim>
float Vector<ndim>::Magnitude()
{
 int k;
 float magsqd = 0.0f;
 for (k=0; k<ndim; k++) magsqd += v[k]*v[k];
 return sqrtf(magsqd);
}

template class Vector<1>;
template class Vector<2>;

• Also, each version of the class you wish to template for a particular parameter (e.g.
ndim = 1, 2, etc..) MUST be declared in .cpp file with :

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 6 : Templating the Vector class

• Template our earlier Vector class so that it can be used for any given dimensionality.

• Also remember to template the dot product function

• Verify that it works in 1 and 2 dimensions

• What happens if you try and compute the dot product between Vectors of different
dimensionality?

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

What is inheritance?

• Let’s go back to our car class!

• Let’s say the mechanic or factory plans on making several different designs that have
different functionality

• Some cars may be 2-wheel drive and some 4-wheel drive

• Some cars might be automatics, some use manual gear shifts

• Some things may be present in one model but not in the other(e.g. built-in GPS, auto-
pilot when you feel sleepy)

• But a lot of things are exactly the same (e.g. dimensions, chasis, lights, etc..)

• Since most of the basic design is the same, instead of starting with brand new plans, the
mechanics and engineers can take the original basic design and modify it to result in the
‘improved’ car.

• The new design will inherit features from the original design

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Creating a virtual base class

• One key conept with inheritance are virtual functions

• A virtual function is a function whose definition can be replaced by an alternative
version in a child class

• This allows programmers to create different implementations of the same algorithm

• A virtual function is simply declared by adding the virtual keyword in front of the
return type

virtual bool Accelerate(float);

virtual bool Accelerate(float) = 0;

• If the virtual function ends with ‘ = 0’, then the class has no definition and the child
class is required to provide a defintion.

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Creating a virtual base class
class Car {
 public:
 Car();
 virtual bool Accelerate(float) = 0;
};

class BatMobile : public Car {
 public:
 BatMobile() : Car() {};
 virtual bool Accelerate(float);

 private:
 bool ActivateFlameThrower();
};

class DeLoreanTimeMachine : public Car {
 public:
 DeLoreanTimeMachine() : Car() {};
 virtual bool Accelerate(float);

 private:
 bool ActivateFluxCapacitor();
};

Car *car;
if (myCar == "BatMobile") {
 car = new BatMobile();
}
else if (myCar == "DeLorean") {
 car = new DeLoreanTimeMachine();
}
car->Accelerate();

• We can then take a pointer of type ‘Car’ and
then create an object of any child class derived
from the Car class

• We can then call any of the Car class functions
(but not the individual private functions)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical 7 : Inheritance

• We will create a super simple class for computing a basic mathematical function,
such as computing the integer power of some given number

• First, create a base virtual class containing the basic interface

!
!
!
!
!

• Next, create TWO child classes that inherit from this simple empty class, one that uses
the C++ implementation (i.e. powf), and one that uses your own simple
implementation

• Create a main program that creates objects and uses both

class PowerFunction {
 public:
 PowerFunction() {};
 ~PowerFunction() {};
!
 virtual float Power(float, int) = 0;
};

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical : Write a simple C++ N-body code

• For a nice simple Astrophysics-related example, we will write a basic N-body code in
C++ to try and put together all of the ideas we’ve discussed.

• The equations of motion are simply Newton’s law of gravitation, either the standard
form (left) or using a softening length (right)

ai = �
NX

j=1

Gmj

|r2ij |
r̂ ai = �

NX

j=1

Gmj

|r2ij + ✏2| r̂

• For super-simple Euler integration, we simply compute the force at the beginning of
the timestep, and the integrate the positions and velocities accordingly, i.e.

ri(t+�t) = ri(t) + vi(t)�t

vi(t+�t) = vi(t) + ai(t)�t

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical : Write a simple C++ N-body code

• We will need THREE basic classes to create this N-body simulation

• A Star class : simple data structure for a star (e.g. position, velocity, mass etc..)

• A Nbody class : contains main N-body algorithm with related functions

• A NbodySimulation class : container for whole simulation; reads in parameters
file, controls main loop, terminates simulation, etc..

• We will create a super-simple parameter file
!
euler // N-body algorithm
ic // Initial conditions
8 // No. of stars
0.1 // epsilon (softening length)
1.0 // Maximum velocity given to stars
0.01 // (Constant) timestep
1.0 // Total simulation time

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical : Write a simple C++ N-body code

• The plan is :

• Look at the basic (but incomplete) framework provided

• Write the basic N-body class using an Euler integrator and finish the missing parts
of the code to get it working

• Next write an inherited N-body class using a different integrator, e.g. Leapfrog
integrator

ri(t+�t) = ri(t) + vi(t)�t+
1

2
ai(t)�t2

vi(t+�t) = vi(t) +
1

2
(ai(t) + ai(t+�t)) �t

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Practical : Write a simple C++ N-body code

• Extra challenges (if everything goes well) :

• Can you generate regular periodic output from the simulation and plot this to show
the motion of the stars?

• Calculate the energy error at the end of the simulation

• Can you template the various classes so that the code can be run in 2 or 3
dimensions chosen at run-time? (1-dimension doesn’t really make sense for N-
body)

• Use STL vectors instead of C++ arrays (new/delete)

