
Installation &
compilation

Giovanni Rosotti

IoA Cambridge

27th October 2015

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Version control system

• To download and update the code, we use the version control system git

• Why?

• easy to maintain several versions

• easy to go back in time

• fundamental to collaborate

• Git is one of the most widely used version control systems (e.g. it’s used for
developing Linux)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

What is version control?

• Stores every version of all the files in the repository: provides therefore a history of the
code

• The updates can be pushed to a repository, allowing the code to be shared among
users

• Different versions (they are called branches) can coexist, allowing a feature to be
developed before being merged in the master branch

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Version control is the solution

• This was the computer science point of view. In real life, if you ever had these
questions (raise your hand if it never happened to you), version control is what you
need:

• how do I avoid having 10 folders with different versions of my code?

• I changed something in the code and now nothing works anymore! How can I go
back to a working version?

• I am working on a code with a collaborator. How can we avoid e-mailing each
other 100 times a day with different source files?

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Distributed version control

• git is a distributed version control

• This means that you don’t need to setup a server to start working; all existing copies of
a repository have the same importance (as far as git itself is concerned, at least)

• A commit is different from a push (will be clearer later)

• Does NOT mean that you can’t have a central repository that everybody will be
pushing to and pulling from

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Basic workflow when developing

• edit code & test (yes, please please
test your code!)

• add changed files

• commit

• push

• The last two actions are done
together in a central version
control system (e.g., svn). Means
you always have to be on-line to
commit

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

A git primer

• Let’s create a new folder and create a git repository

• Create a file with some content

• Add the file to the “staging area” running

• Finally commit by running

git init

git add file.c

git commit -m “A message”

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

commit & push

• A commit saves the changes only in
your local repository

• If you want the changes to
propagate somewhere else, you
need to push them

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

pull

• In the same way as push updates the remote side, pull updates your local version

• Sometimes this is straightforward (in git language: fast-forward); more complicated if
the histories have diverged

• Pulling can lead to conflicts, i.e. things that git cannot solve by itself

• In contrast, no conflicts can happen when pushing. Git will simply prevent you from
pushing

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Branches

• As many versions of the code can coexist in different branches

• create a branch

• “switch” the code to another version

• merge changes from other branch

• In this way you can have as many versions as you want!

git branch new-branch

git checkout new-branch

git merge other-branch

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

History

• This was just a primer; if you need to know more there’s a lot of material on the web!

• Personally I recommend http://git-scm.com/docs/gittutorial

http://git-scm.com/docs/gittutorial

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Installing GANDALF

• So we have downloaded GANDALF. And now?

• Open the makefile and customise for your system

• Make sure you have the right dependencies:

• C++ compiler

• Python with scientific packages

• SWIG

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Linux

• You probably have already a c++ compiler

• Depending on your distribution, you need to use different commands for installing
python:

• red hat (fedora): yum

• debian (e.g. ubuntu): apt-get

• if you use another distro, chances are you know what I am saying better than me…

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Macs

• The easiest things is to use a package manager:

• homebrew

• fink

• macports

• DO NOT use apple provided version of python

• apple provided CLANG is fine, but it does NOT support openMP. It should not be a
problem as presumably you will not run simulations on your laptop anyway… But if
you are developing on your laptop and need to test the code, use gcc

• Confusingly, gcc/g++ on a mac actually invokes clang (yes, I hate apple too)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Python - other possibilities

• You can also consider using the entought/anaconda python distributions

• A simple package that installs everything (?) you need

• In my experience, more difficult to upgrade (and sometimes you are stuck with old
versions) - but a lot of people find these packages convenient

• If you are already using a package manager, my suggestion is to stick with that

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Makefile

• GANDALF makefile looks like this:

CPP = g++
PYTHON = python
COMPILER_MODE = FAST
PRECISION = DOUBLE
OPENMP = 0
OUTPUT_LEVEL = 1
DEBUG_LEVEL = 0

FFTW libary flags and paths.
#--
FFTW = 0
FFTW_INCLUDE =
FFTW_LIBRARY =

GNU Scientific library flags and paths.
#---
GSL = 0
GSL_INCLUDE =
GSL_LIBRARY =

Substitute with the name of the compiler
and python on your system

For MPI on most system you need to use
the compiler mpic++

Put here paths of FFTW and GSL

Test with and without openMP

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Makefile 2

• If you are using a non standard compiler, need to set manually the flags in src/
Makefile

ifeq ($(findstring g++,$(CPP)),g++)
ifeq ($(COMPILER_MODE),FAST)
OPT += -O3 -ffast-math -fPIC -fno-exceptions -fno-rtti
else ifeq ($(COMPILER_MODE),STANDARD)
OPT += -O3 -fPIC -fno-exceptions -fno-rtti
else ifeq ($(COMPILER_MODE),PROFILE)
OPT += -O3 -fPIC -fno-exceptions -fno-rtti -pg
else ifeq ($(COMPILER_MODE),DEBUG)
OPT += -O3 -g -Wall -Wno-unknown-pragmas -Wno-reorder -fbounds-
check -fPIC #-f$
endif
ifeq ($(OPENMP),1)
OPT += -fopenmp
endif
endif

Set the options
needed for your

specific compiler

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Time to get your hands dirty!

