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So, what’s the wrong and right way to do 
units and why?

• Use physical units of the completely wrong scale 
(e.g. cm, s) 

!
• Use physical units of a more appropriate scale 

(e.g. pc, Myr) 

!
• Use arbitrary dimensionless units (i.e. rely on the 

user to calculate any scale factors) 

!
• Use dimensionless units where the scale factors 

are calculated by the code automatically

Very wrong!

Better but still wrong

Correct, but more difficult 
 than it needs to be

Yes!
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• Dimensionless units are a system of units where a physical quantity can be converted 
to an equivalent dimensionless quantity by way of a scaling factor, e.g.  

• For example, take the quantity a which has a scale factor of A0, then we can convert 
this to an equivalent dimensionless quantity, a’ :  

!
!
!

• Dimensionless units themselves can always be converted back to the real, physical 
units at any time 

• They are different to dimensionless constants (such as e, π, etc..) which are truly 
dimensionless and are indepedent of any external system of units.

What are dimensionless units exactly?

a0 =
a

A0
() a = A0 a

0
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Why use dimensionless units? 
Floating point precision

• One of the biggest arguments for using dimensionless units is the effect of finite 
floating point precision 

• The single precision floating point range is  

• Many astronomers love to continue to use cgs units (even in simulations) even though 
they’re completely inappropriate for almost any astrophysical context 

• Using cgs (or SI or similar non-astronomical units) can cause floating point precision 
in various situations, e.g.  

• Computing volumes, e.g. a parsec size box volume,  

!
• Computing quadrupole (or higher-order) correction terms in the gravity tree

10�38 � 10+38

1 pc3 = 2.93⇥ 1049 m3 = 2.93⇥ 1055 cm�3

1

r5
=

1

pc5
= 3.57⇥ 10�83 m�5 = 3.57⇥ 10�93 cm�5
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Relations between dimensionless quantities

• Although we have freedom to choose a base set of dimensionless units (e.g. mass, 
length and time), derived quantities that use various combinations of these units must 
be consistent 

!
!

• Velocity units, for example, would be a combination of length and time units, i.e.  

!
!

• and acceleration units : 

r0 =
r

R0
m0 =

m

M0
t0 =

t

T0

v0 =
v

V0
= v

T0

R0
where V0 =

R0

T0

a0 =
a

A0
= a

T 2
0

R0
where A0 =

R0

T 2
0
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Using dimensionless units to ‘eliminate’ 
physical constants

• Many interesting physical problems involves some physical constant, such as G, c, µ0, 
etc.. 

• We can chose a set of dimensionless units such that the physical constant in the new 
set of units is unity 

• Various advantages to this 

• If chosen correctly, all physical quantities will be close to unity (better for summing 
floating point numbers, easier to spot ‘incorrect’ numbers 

• Completely factors out needing to multiply by the constant (can save a little CPU 
time at least)
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Example : Setting G = 1

• One common example of setting physical constants to unity is in gravitational 
problems.   N-body codes would often employ a system of units that sets G = 1 

• Substituting for our dimensionless units and rearranging 

!
!
!

• The final equation in dimensionless form is similar with the constants grouped 
together, which we’ve called G’.  If we wish to effectively set G’ = 1, then this imposes 
a constraint on one of our quantities.  Traditionally, this has been the time variable : 

GM0 T 2
0

R3
0

= 1 ) T0 =

✓
R3

0

GM0

◆1/2

a =
Gm

r2
) R0

T 2
0

a0 =
GM0 m0

R2
0 r

02 ) a0 =

⇢
GM0 T 2

0

R3
0

�

| {z }
G0

m0

r02

• Typical units (in N-body and star formation problems) would select R0 = 1pc and M0 = 
1 solar mass.  What does the time unit, T0 , come out as?  
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Example : Setting G = 1

• This has a knock-on effect on any other unit that has time as a dimension 

• e.g. Velocity unit

T0 = 4.7⇥ 1014 s = 14.91Myr

V0 =
R0

T0
= 0.065 km s�1 = 0.067 pcMyr�1
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Another example : Setting kb/mh = 1

• In hydrodynamics, if we wish to convert from internal energy to temperature, we must 
use the Boltzmann constant, kb, and the mass of a hydrogen atom, mh. 

• Similar to setting G = 1, we can set the collection of constants in the sound speed 
equation to unity to set an appropriate unit for temperature, i.e.  

!
!
!
!
!

• Using the same typical star formation units we employed for the G = 1 example, we 
fine that 

c2 = �
kb T

m̄
) V 2

0 c0
2
= �

kb ✓0 T 0

mh µ̄
) c0

2
= �

⇢
kb ✓0
mh V 2

0

�

| {z }
1

T 0

µ̄

kb ✓0
mh V 2

0

= 1 ) ✓0 = V 2
0
mh

kb

✓0 = 0.51K
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Units in GANDALF

• We created a ‘SimUnit’ class in GANDALF to hold and compute all required scaling 
factors 

• Each required unit class inherits from this base class

class SimUnit 
{ 
 public: 
!
  SimUnit(); 
  virtual ~SimUnit() {}; 
!
  virtual DOUBLE SIUnit(string) = 0; 
  virtual string LatexLabel(string) = 0; 
  DOUBLE OutputScale(string); 
!
  DOUBLE inscale; 
  DOUBLE inSI; 
  DOUBLE outcgs; 
  DOUBLE outscale; 
  DOUBLE outSI; 
  string inunit; 
  string outunit; 
};

class LengthUnit: public SimUnit 
{ 
 public: 
  LengthUnit() : SimUnit() {}; 
  DOUBLE SIUnit(string); 
  string LatexLabel(string); 
!
}; 
!
class MassUnit: public SimUnit 
{ 
 public: 
  MassUnit() : SimUnit() {}; 
  DOUBLE SIUnit(string); 
  string LatexLabel(string); 
!
}; 
!
etc..
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Units in GANDALF

• An all-encompasing class called ‘SimUnits’  (there’s an extra ’s’) which then holds 
everything in one place : 

class SimUnits 
{ 
 public: 
!
  SimUnits(); 
  ~SimUnits(); 
!
  void SetupUnits(Parameters *); 
  void OutputScalingFactors(Parameters *); 
!
  int dimensionless;                ///< Are we using dimensionless units? 
  bool ReadInputUnits;              ///< Are input units read from snapshot? 
!
!
  // Instances of all unit classes 
  //--------------------------------------------------------------------- 
  LengthUnit r;                     ///< Length unit 
  MassUnit m;                       ///< Mass unit 
  TimeUnit t;                       ///< Time unit 
  VelocityUnit v;                   ///< Velocity unit 
  AccelerationUnit a;               ///< Acceleration unit 
  DensityUnit rho;                  ///< Density unit 
  etc.. 
};
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Input units vs Output units

• GANDALF is designed to handle simulataneously an input and output set of units 

• For example, maybe you are reading in initial conditions in one set of units (e.g. pcs, 
Myr) but want to output in a different set (e.g. au, yr) 

• However, in most cases, you will generate initial conditions with the same set of units 
OR create initial conditions on the fly 

• Your choice of output units will often be set in the parameters file

#--------------------------- 
# Simulation units variables 
#--------------------------- 
Use physical units                          : dimensionless = 0 
Length units                                : routunit = pc 
Mass units                                  : moutunit = m_sun 
Time units                                  : toutunit = myr 
Velocity units                              : voutunit = km_s 
Density units                               : rhooutunit = g_cm3 
Temperature units                           : tempoutunit = K 
Specific internal energy units              : uoutunit = J_kg 
Angular velocity unit                       : angveloutunit = rad_s
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Computing the scaling factors

• In order to simpify the calculation of scaling factors, we calculate everything in the 
same set of units internally.   We use SI units (although we could have chosen cgs or 
another set if we wished)

{
{

Converts code units to  
requested output units

Converts requested  
output units to SI units

• If we have a different set of input and output units, then both of these should be 
consistent with each other, i.e. 

R
0

= R
outscale

⇥R
outSI

R
0

= R
outscale

⇥R
outSI

= R
inscale

⇥R
inSI
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Length and mass units

  // Length units 
  //------------------------------------------------------ 
  r.inunit   = params->stringparams["rinunit"]; 
  r.outunit  = params->stringparams["routunit"]; 
  r.inSI     = r.SIUnit(params->stringparams["rinunit"]); 
  r.outSI    = r.SIUnit(params->stringparams["routunit"]); 
  r.outcgs   = 100.0*r.outSI; 
  r.outscale = 1.0; 
  r.inscale  = r.outscale*r.outSI/r.inSI;

• As discussed earlier, we select the length and mass units directly so these are trivial 
and are set as 1.0 each.  We also need to compute the SI and cgs factors

R
inscale

=
R

outscale

⇥R
outSI

R
inSI
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Mass units

  // Mass units 
  //------------------------------------------------------ 
  m.inunit   = params->stringparams["minunit"]; 
  m.outunit  = params->stringparams["moutunit"]; 
  m.inSI     = m.SIUnit(params->stringparams["minunit"]); 
  m.outSI    = m.SIUnit(params->stringparams["moutunit"]); 
  m.outcgs   = 1000.0*m.outSI; 
  m.outscale = 1.0; 
  m.inscale  = m.outscale*m.outSI/m.inSI;

• As discussed earlier, we select the length and mass units directly so these are trivial 
and are set as 1.0 each
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Time units

• The time units are computed to ensure G = 1 as described earlier

  // Time units 
  //------------------------------------------------------------------------- 
  t.inunit   = params->stringparams["tinunit"]; 
  t.outunit  = params->stringparams["toutunit"]; 
  t.inSI     = t.SIUnit(params->stringparams["tinunit"]); 
  t.outSI    = t.SIUnit(params->stringparams["toutunit"]); 
  t.inscale  = pow(r.inscale*r.inSI,1.5)/sqrt(m.inscale*m.inSI*G_const); 
  t.inscale  /= t.inSI; 
  t.outscale = pow(r.outscale*r.outSI,1.5)/sqrt(m.outscale*m.outSI*G_const); 
  t.outscale /= t.outSI; 
  t.outcgs   = t.outSI;

T
0

=

✓
R3

0
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0

◆
1/2

) T
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⇥ T
outSI

=

✓
R3

outscale

⇥ R3

outSI

G
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M
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⇥M
outSI

◆
1/2

T
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Converting initial conditions and input 
parameters to code units

• Converting initial conditions and/or parameters is simply a case of using the inscale/
outscale variables. 

• e.g. if you input velocities in km/s, then 

!
!

• Then all velocity quantities are scaled using  

!
• If you have a parameter that is in either SI or cgs, then also divide by the SI/cgs factor

Velocity units                              : voutunit = km_s

v0 =
v(km s)

V
outscale

rho

0 =
rho(g cm�3)

rho

outscale

⇥ rho

outcgs
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Code units vs output units

• GANDALF only uses these dimensionless units internally for computing quantities 
internally 

• When generating output, such as snapshot files, all quantities are converted back to 
physical units (specified by the outscale selections) 

!
!
!

• For example, when outputting to file : 

v(km s) = V
outscale

⇥ v0

  outfile << part.r[0]*simunits.r.outscale << "   " 
          << part.v[0]*simunits.v.outscale << "   " 
          << part.m*simunits.m.outscale << "   " 
          << part.h*simunits.r.outscale << "   " 
          << part.rho*simunits.rho.outscale << "   " 
          << part.u*simunits.u.outscale << "   " 
          << endl;
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So, some basic rules about chosing units for 
your code

• Obviously, choose some set of units that is representive of your problem.  Having a 
nice dimensionless framework means nothing if you still chose strange units 

• And that’s about it!


