
How to do units and
scaling right
(Or at least how to
NOT do them wrong)

David Hubber
!
USM, LMU, München
Excellence Cluster Universe,
Garching bei München
!
27th October 2015

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

So, what’s the wrong and right way to do
units and why?

• Use physical units of the completely wrong scale
(e.g. cm, s)

!
• Use physical units of a more appropriate scale

(e.g. pc, Myr)

!
• Use arbitrary dimensionless units (i.e. rely on the

user to calculate any scale factors)

!
• Use dimensionless units where the scale factors

are calculated by the code automatically

Very wrong!

Better but still wrong

Correct, but more difficult
 than it needs to be

Yes!

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

• Dimensionless units are a system of units where a physical quantity can be converted
to an equivalent dimensionless quantity by way of a scaling factor, e.g.

• For example, take the quantity a which has a scale factor of A0, then we can convert
this to an equivalent dimensionless quantity, a’ :

!
!
!

• Dimensionless units themselves can always be converted back to the real, physical
units at any time

• They are different to dimensionless constants (such as e, π, etc..) which are truly
dimensionless and are indepedent of any external system of units.

What are dimensionless units exactly?

a0 =
a

A0
() a = A0 a

0

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Why use dimensionless units?
Floating point precision

• One of the biggest arguments for using dimensionless units is the effect of finite
floating point precision

• The single precision floating point range is

• Many astronomers love to continue to use cgs units (even in simulations) even though
they’re completely inappropriate for almost any astrophysical context

• Using cgs (or SI or similar non-astronomical units) can cause floating point precision
in various situations, e.g.

• Computing volumes, e.g. a parsec size box volume,

!
• Computing quadrupole (or higher-order) correction terms in the gravity tree

10�38 � 10+38

1 pc3 = 2.93⇥ 1049 m3 = 2.93⇥ 1055 cm�3

1

r5
=

1

pc5
= 3.57⇥ 10�83 m�5 = 3.57⇥ 10�93 cm�5

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Relations between dimensionless quantities

• Although we have freedom to choose a base set of dimensionless units (e.g. mass,
length and time), derived quantities that use various combinations of these units must
be consistent

!
!

• Velocity units, for example, would be a combination of length and time units, i.e.

!
!

• and acceleration units :

r0 =
r

R0
m0 =

m

M0
t0 =

t

T0

v0 =
v

V0
= v

T0

R0
where V0 =

R0

T0

a0 =
a

A0
= a

T 2
0

R0
where A0 =

R0

T 2
0

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Using dimensionless units to ‘eliminate’
physical constants

• Many interesting physical problems involves some physical constant, such as G, c, µ0,
etc..

• We can chose a set of dimensionless units such that the physical constant in the new
set of units is unity

• Various advantages to this

• If chosen correctly, all physical quantities will be close to unity (better for summing
floating point numbers, easier to spot ‘incorrect’ numbers

• Completely factors out needing to multiply by the constant (can save a little CPU
time at least)

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Example : Setting G = 1

• One common example of setting physical constants to unity is in gravitational
problems. N-body codes would often employ a system of units that sets G = 1

• Substituting for our dimensionless units and rearranging

!
!
!

• The final equation in dimensionless form is similar with the constants grouped
together, which we’ve called G’. If we wish to effectively set G’ = 1, then this imposes
a constraint on one of our quantities. Traditionally, this has been the time variable :

GM0 T 2
0

R3
0

= 1) T0 =

✓
R3

0

GM0

◆1/2

a =
Gm

r2
) R0

T 2
0

a0 =
GM0 m0

R2
0 r

02) a0 =

⇢
GM0 T 2

0

R3
0

�

| {z }
G0

m0

r02

• Typical units (in N-body and star formation problems) would select R0 = 1pc and M0 =
1 solar mass. What does the time unit, T0 , come out as?

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Example : Setting G = 1

• This has a knock-on effect on any other unit that has time as a dimension

• e.g. Velocity unit

T0 = 4.7⇥ 1014 s = 14.91Myr

V0 =
R0

T0
= 0.065 km s�1 = 0.067 pcMyr�1

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Another example : Setting kb/mh = 1

• In hydrodynamics, if we wish to convert from internal energy to temperature, we must
use the Boltzmann constant, kb, and the mass of a hydrogen atom, mh.

• Similar to setting G = 1, we can set the collection of constants in the sound speed
equation to unity to set an appropriate unit for temperature, i.e.

!
!
!
!
!

• Using the same typical star formation units we employed for the G = 1 example, we
fine that

c2 = �
kb T

m̄
) V 2

0 c0
2
= �

kb ✓0 T 0

mh µ̄
) c0

2
= �

⇢
kb ✓0
mh V 2

0

�

| {z }
1

T 0

µ̄

kb ✓0
mh V 2

0

= 1) ✓0 = V 2
0
mh

kb

✓0 = 0.51K

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Units in GANDALF

• We created a ‘SimUnit’ class in GANDALF to hold and compute all required scaling
factors

• Each required unit class inherits from this base class

class SimUnit
{
 public:
!
 SimUnit();
 virtual ~SimUnit() {};
!
 virtual DOUBLE SIUnit(string) = 0;
 virtual string LatexLabel(string) = 0;
 DOUBLE OutputScale(string);
!
 DOUBLE inscale;
 DOUBLE inSI;
 DOUBLE outcgs;
 DOUBLE outscale;
 DOUBLE outSI;
 string inunit;
 string outunit;
};

class LengthUnit: public SimUnit
{
 public:
 LengthUnit() : SimUnit() {};
 DOUBLE SIUnit(string);
 string LatexLabel(string);
!
};
!
class MassUnit: public SimUnit
{
 public:
 MassUnit() : SimUnit() {};
 DOUBLE SIUnit(string);
 string LatexLabel(string);
!
};
!
etc..

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Units in GANDALF

• An all-encompasing class called ‘SimUnits’ (there’s an extra ’s’) which then holds
everything in one place :

class SimUnits
{
 public:
!
 SimUnits();
 ~SimUnits();
!
 void SetupUnits(Parameters *);
 void OutputScalingFactors(Parameters *);
!
 int dimensionless; ///< Are we using dimensionless units?
 bool ReadInputUnits; ///< Are input units read from snapshot?
!
!
 // Instances of all unit classes
 //---
 LengthUnit r; ///< Length unit
 MassUnit m; ///< Mass unit
 TimeUnit t; ///< Time unit
 VelocityUnit v; ///< Velocity unit
 AccelerationUnit a; ///< Acceleration unit
 DensityUnit rho; ///< Density unit
 etc..
};

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Input units vs Output units

• GANDALF is designed to handle simulataneously an input and output set of units

• For example, maybe you are reading in initial conditions in one set of units (e.g. pcs,
Myr) but want to output in a different set (e.g. au, yr)

• However, in most cases, you will generate initial conditions with the same set of units
OR create initial conditions on the fly

• Your choice of output units will often be set in the parameters file

#---------------------------
Simulation units variables
#---------------------------
Use physical units : dimensionless = 0
Length units : routunit = pc
Mass units : moutunit = m_sun
Time units : toutunit = myr
Velocity units : voutunit = km_s
Density units : rhooutunit = g_cm3
Temperature units : tempoutunit = K
Specific internal energy units : uoutunit = J_kg
Angular velocity unit : angveloutunit = rad_s

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Computing the scaling factors

• In order to simpify the calculation of scaling factors, we calculate everything in the
same set of units internally. We use SI units (although we could have chosen cgs or
another set if we wished)

{
{

Converts code units to
requested output units

Converts requested
output units to SI units

• If we have a different set of input and output units, then both of these should be
consistent with each other, i.e.

R
0

= R
outscale

⇥R
outSI

R
0

= R
outscale

⇥R
outSI

= R
inscale

⇥R
inSI

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Length and mass units

 // Length units
 //--
 r.inunit = params->stringparams["rinunit"];
 r.outunit = params->stringparams["routunit"];
 r.inSI = r.SIUnit(params->stringparams["rinunit"]);
 r.outSI = r.SIUnit(params->stringparams["routunit"]);
 r.outcgs = 100.0*r.outSI;
 r.outscale = 1.0;
 r.inscale = r.outscale*r.outSI/r.inSI;

• As discussed earlier, we select the length and mass units directly so these are trivial
and are set as 1.0 each. We also need to compute the SI and cgs factors

R
inscale

=
R

outscale

⇥R
outSI

R
inSI

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Mass units

 // Mass units
 //--
 m.inunit = params->stringparams["minunit"];
 m.outunit = params->stringparams["moutunit"];
 m.inSI = m.SIUnit(params->stringparams["minunit"]);
 m.outSI = m.SIUnit(params->stringparams["moutunit"]);
 m.outcgs = 1000.0*m.outSI;
 m.outscale = 1.0;
 m.inscale = m.outscale*m.outSI/m.inSI;

• As discussed earlier, we select the length and mass units directly so these are trivial
and are set as 1.0 each

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Time units

• The time units are computed to ensure G = 1 as described earlier

 // Time units
 //---
 t.inunit = params->stringparams["tinunit"];
 t.outunit = params->stringparams["toutunit"];
 t.inSI = t.SIUnit(params->stringparams["tinunit"]);
 t.outSI = t.SIUnit(params->stringparams["toutunit"]);
 t.inscale = pow(r.inscale*r.inSI,1.5)/sqrt(m.inscale*m.inSI*G_const);
 t.inscale /= t.inSI;
 t.outscale = pow(r.outscale*r.outSI,1.5)/sqrt(m.outscale*m.outSI*G_const);
 t.outscale /= t.outSI;
 t.outcgs = t.outSI;

T
0

=

✓
R3

0

GM
0

◆
1/2

) T
outscale

⇥ T
outSI

=

✓
R3

outscale

⇥ R3

outSI

G
SI

M
outscale

⇥M
outSI

◆
1/2

T
outscale

=

✓
R3

outscale

⇥R3

outSI

G
SI

M
outscale

⇥M
outSI

◆
1/2

1

T
outSI

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Converting initial conditions and input
parameters to code units

• Converting initial conditions and/or parameters is simply a case of using the inscale/
outscale variables.

• e.g. if you input velocities in km/s, then

!
!

• Then all velocity quantities are scaled using

!
• If you have a parameter that is in either SI or cgs, then also divide by the SI/cgs factor

Velocity units : voutunit = km_s

v0 =
v(km s)

V
outscale

rho

0 =
rho(g cm�3)

rho

outscale

⇥ rho

outcgs

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

Code units vs output units

• GANDALF only uses these dimensionless units internally for computing quantities
internally

• When generating output, such as snapshot files, all quantities are converted back to
physical units (specified by the outscale selections)

!
!
!

• For example, when outputting to file :

v(km s) = V
outscale

⇥ v0

 outfile << part.r[0]*simunits.r.outscale << " "
 << part.v[0]*simunits.v.outscale << " "
 << part.m*simunits.m.outscale << " "
 << part.h*simunits.r.outscale << " "
 << part.rho*simunits.rho.outscale << " "
 << part.u*simunits.u.outscale << " "
 << endl;

“Computational Astrophysics with GANDALF” - Freising, Bavaria, 26th - 30th October 2015

So, some basic rules about chosing units for
your code

• Obviously, choose some set of units that is representive of your problem. Having a
nice dimensionless framework means nothing if you still chose strange units

• And that’s about it!

